logo logo
Association between Striatal Brain Iron Deposition, Microbleeds and Cognition 1 Year After a Minor Ischaemic Stroke. Valdés Hernández Maria Del C,Case Tessa,Chappell Francesca M,Glatz Andreas,Makin Stephen,Doubal Fergus,Wardlaw Joanna M International journal of molecular sciences Brain iron deposits (IDs) are inversely associated with cognitive function in community-dwelling older people, but their association with cognition after ischemic stroke, and whether that differs from microbleeds, is unknown. We quantified basal ganglia IDs (BGID) and microbleeds (BMBs) semi-automatically on brain magnetic resonance images from patients with minor stroke (NIHSS < 7), at presentation and 12 months after stroke. We administered the National Adult Reading Test (NART, estimates premorbid or peak adult cognition) and the Revised Addenbrooke's Cognitive Examination (ACE-R; current cognition) at 1 and 12 months after stroke. We adjusted analyses for baseline cognition, age, gender, white matter hyperintensity (WMH) volume and vascular risk factors. In 200 patients, mean age 65 years, striatal IDs and BMBs volumes did not change over the 12 months. Baseline BGID volumes correlated positively with NART scores at both times (ρ = 0.19, < 0.01). Baseline and follow-up BGID volumes correlated positively with age (ρ = 0.248, < 0.001 and ρ = 0.271, < 0.001 respectively), but only baseline (and not follow-up) BMB volume correlated with age (ρ = 0.129, < 0.05). Both smoking and baseline WMH burden predicted verbal fluency and visuospatial abilities scores (B = -1.13, < 0.02 and B = -0.22, = 0.001 respectively) at 12 months after stroke. BGIDs and BMBs are associated differently with cognition post-stroke; studies of imaging and post-stroke cognition should adjust for premorbid cognition. The positive correlation of BGID with NART may reflect the lower premorbid cognition in patients with stroke at younger vs older ages. 10.3390/ijms20061293
Immune-Inflammatory, Metabolic, Oxidative, and Nitrosative Stress Biomarkers Predict Acute Ischemic Stroke and Short-Term Outcome. Alfieri Daniela Frizon,Lehmann Marcio Francisco,Flauzino Tamires,de Araújo Maria Caroline Martins,Pivoto Nicolas,Tirolla Rafaele Maria,Simão Andrea Name Colado,Maes Michael,Reiche Edna Maria Vissoci Neurotoxicity research Immune-inflammatory, metabolic, oxidative, and nitrosative stress (IMO&NS) pathways and, consequently, neurotoxicity are involved in acute ischemic stroke (IS). The simultaneous assessment of multiple IMO&NS biomarkers may be useful to predict IS and its prognosis. The aim of this study was to identify the IMO&NS biomarkers, which predict short-term IS outcome. The study included 176 IS patients and 176 healthy controls. Modified Rankin scale (mRS) was applied within 8 h after IS (baseline) and 3 months later (endpoint). Blood samples were obtained within 24 h after hospital admission. IS was associated with increased white blood cell (WBC) counts, high sensitivity C-reactive protein (hsCRP), interleukin (IL-6), lipid hydroperoxides (LOOHs), nitric oxide metabolites (NOx), homocysteine, ferritin, erythrocyte sedimentation rate (ESR), glucose, insulin, and lowered iron, 25-hydroxyvitamin D [25(OH)D], total cholesterol, and high-density lipoprotein (HDL) cholesterol. We found that 89.4% of the IS patients may be correctly classified using the cumulative effects of male sex, systolic blood pressure (SBP), glucose, NOx, LOOH, 25(OH)D, IL-6, and WBC with sensitivity of 86.2% and specificity of 93.0%. Moreover, increased baseline disability (mRS ≥ 3) was associated with increased ferritin, IL-6, hsCRP, WBC, ESR, and glucose. We found that 25.0% of the variance in the 3-month endpoint (mRS) was explained by the regression on glucose, ESR, age (all positively), and HDL-cholesterol, and 25(OH)D (both negatively). These results show that the cumulative effects of IMO&NS biomarkers are associated with IS and predict a poor outcome at 3-month follow-up. 10.1007/s12640-020-00221-0
Iron Dyshomeostasis Induces Binding of APP to BACE1 for Amyloid Pathology, and Impairs APP/Fpn1 Complex in Microglia: Implication in Pathogenesis of Cerebral Microbleeds. Gong Li,Tian Xiangzhu,Zhou Jing,Dong Qiong,Tan Yan,Lu You,Wu Jiayan,Zhao Yanxin,Liu Xueyuan Cell transplantation As a putative marker of cerebral small vessel disease, cerebral microbleeds (CMBs) have been associated with vascular cognitive impairment. Both iron accumulation and amyloid protein precursor (APP) dysregulation are recognized as pathological hallmarks underlying the progression of CMBs, but their cross-talk is not yet understood. In this study, we found a profound increase of amyloid formation with increasing FeCl treatment, and a distinct change in APP metabolism and expression of iron homeostasis proteins (ferritin, Fpn1, iron regulatory protein) was observed at the 300 uM concentration of FeCl. Further results revealed that extracellular iron accumulation might potentially induce binding of APP to BACE1 for amyloid formation and decrease the capability of APP/Fpn1 in mediating iron export. Our findings in this study, reflecting a probable relationship between iron dyshomeostasis and amyloid pathology, may help shed light on the underlying pathogenesis of CMBs in vascular cognitive impairment. 10.1177/0963689719831707
Myelin endocytosis by brain endothelial cells causes endothelial iron overload and oligodendroglial iron hunger in hypoperfusion-induced white matter injury. CNS neuroscience & therapeutics AIMS:Hypoperfusion induces significant white matter injury in cerebral vascular disorders, including arteriosclerotic cerebral small vessel disease (aCSVD), which is prevalent among the elderly. Iron transport by blood vessel endothelial cells (BVECs) from the periphery supports oligodendrocyte maturation and white matter repair. This study aims to elucidate the association between iron homeostasis changes and white matter injury severity, and explore the crosstalk between BVECs and oligodendroglial lineage cells. METHODS:In vivo: C57BL/6 mice were subjected to unilateral common carotid artery occlusion (UCCAO). In vitro: BVECs with myelin pretreatment were co-cultured with oligodendrocyte progenitor cells (OPCs) or organotypic cerebellar slices subjected to oxygen and glucose deprivation. RESULTS:Circulatory iron tends to be stored in aCSVD patients with white matter injury. Myelin debris endocytosis by BVECs impairs iron transport, trapping iron in the blood and away from the brain, worsening oligodendrocyte iron deficiency in hypoperfusion-induced white matter injury. Iron accumulation in BVECs triggers ferroptosis, suppressing iron transport and hindering white matter regeneration. Intranasal holo-transferrin (hTF) administration bypassing the BBB alleviates oligodendrocyte iron deficiency and promotes myelin regeneration in hypoperfusion-induced white matter injury. CONCLUSION:The iron imbalance between BVECs and oligodendroglial lineage cells is a potential therapeutic target in hypoperfusion-induced white matter injury. 10.1111/cns.14925
Effect of corticosubcortical iron deposition on dysfunction in CADASIL is mediated by white matter microstructural damage. NeuroImage. Clinical Iron dysregulation may attenuate cognitive performance in patients with CADASIL. However, the underlying pathophysiological mechanisms remain incompletely understood. Whether white matter microstructural changes mediate these processes is largely unclear. In the present study, 30 cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) patients were confirmed via genetic analysis and 30 sex- and age-matched healthy controls underwent multimodal MRI examinations and neuropsychological assessments. Quantitative susceptibility mapping and peak width of skeletonized mean diffusivity (PSMD) were analyzed. Mediation effect analysis was performed to explore the interrelationship between iron deposition, white matter microstructural changes and cognitive deficits in CADASIL. Cognitive deterioration was most affected in memory and executive function, followed by attention and working memory in CADASIL. Excessive iron in the temporal-precuneus pathway and deep gray matter specific to CADASIL were identified. Mediation analysis further revealed that PSMD mediated the relationship between iron concentration and cognitive profile in CADASIL. The present findings provide a new perspective on iron deposition in the corticosubcortical circuit and its contribution to disease-related selective cognitive decline, in which iron concentration may affect cognition by white matter microstructural changes in CADASIL. 10.1016/j.nicl.2023.103485
Brain iron deposition and cognitive decline in patients with cerebral small vessel disease : a quantitative susceptibility mapping study. Alzheimer's research & therapy BACKGROUND:Quantitative susceptibility mapping (QSM) can study the susceptibility values of brain tissue which allows for noninvasive examination of local brain iron levels in both normal and pathological conditions. PURPOSE:Our study compares brain iron deposition in gray matter (GM) nuclei between cerebral small vessel disease (CSVD) patients and healthy controls (HCs), exploring factors that affect iron deposition and cognitive function. MATERIALS AND METHODS:A total of 321 subjects were enrolled in this study. All subjects had cognitive examination including the Stroop color word test (SCWT) and MRI including multiecho gradient echo (mGRE) sequence. The patients with CSVD were divided into mild to moderate group (CSVD-M, total CSVD score ≤ 1) and severe group (CSVD-S, total CSVD score > 1). Morphology-enabled dipole inversion with an automated uniform cerebrospinal fluid zero reference algorithm (MEDI + 0) was used to generate brain QSM maps from mGRE data. Deep gray regional susceptibility values and cognitive function were compared among three groups (CSVD-S, CSVD-M, and HC) using multiple linear regression analysis and mediation effect analysis. RESULTS:There were significant differences in the SCWT scores and mean susceptibility values of the globus pallidus (GP), putamen (Put), and caudate nucleus (CN) among the three groups (P < 0.05, FDR correction). Age had a significant positive impact on the susceptibility values of GP (p = 0.018), Put (p < 0.001), and CN (p < 0.001). A history of diabetes had a significant positive influence on the susceptibility values of Put (p = 0.011) and CN (p < 0.001). A smoking history had a significant positive association with the susceptibility values of CN (p = 0.019). Mediation effect analysis demonstrated that iron deposition in the neostriatum partially mediated the relationship between hypertension and cognitive function. Age, diabetes, and smoking may increase iron deposition in the basal ganglia, associated with cognitive decline. The mean susceptibility values of the neostriatum played a mediating role in the association between hypertension and cognitive scores. CONCLUSIONS:Age, diabetes, and smoking are associated with increased iron deposition in the basal ganglia and also linked to cognitive decline. This can help with understanding CSVD and its prevention and treatment. 10.1186/s13195-024-01638-x
Iron accumulation/overload and Alzheimer's disease risk factors in the precuneus region: A comprehensive narrative review. Aging medicine (Milton (N.S.W)) Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by amyloid plaques, neurofibrillary tangles, and neuronal loss. Early cerebral and body iron dysregulation and accumulation interact with AD pathology, particularly in the precuneus, a crucial functional hub in cognitive functions. Quantitative susceptibility mapping (QSM), a novel post-processing approach, provides insights into tissue iron levels and cerebral oxygen metabolism and reveals abnormal iron accumulation early in AD. Increased iron deposition in the precuneus can lead to oxidative stress, neuroinflammation, and accelerated neurodegeneration. Metabolic disorders (diabetes, non-alcoholic fatty liver disease (NAFLD), and obesity), genetic factors, and small vessel pathology contribute to abnormal iron accumulation in the precuneus. Therefore, in line with the growing body of literature in the precuneus region of patients with AD, QSM as a neuroimaging method could serve as a non-invasive biomarker to track disease progression, complement other imaging modalities, and aid in early AD diagnosis and monitoring. 10.1002/agm2.12363
Cerebrospinal Fluid Metals and the Association with Cerebral Small Vessel Disease. Shams Mana,Martola Juha,Charidimou Andreas,Granberg Tobias,Ferreira Daniel,Westman Eric,Wintermark Max,Iv Michael,Larvie Mykol,Kristoffersen Wiberg Maria,Kaijser Magnus,Forsgard Niklas,Zetterberg Henrik,Wahlund Lars-Olof,Shams Sara Journal of Alzheimer's disease : JAD BACKGROUND:Brain metal homeostasis is essential for brain health, and deregulation can result in oxidative stress on the brain parenchyma. OBJECTIVE:Our objective in this study was to focus on two hemorrhagic MRI manifestations of small vessel disease [cerebral microbleeds (CMBs) and cortical superficial siderosis (cSS)] and associations with cerebrospinal fluid (CSF) iron levels. In addition, we aimed to analyze CSF biomarkers for dementia and associations with CSF metal levels. METHODS:This is a cross-sectional study of 196 patients who underwent memory clinic investigation, including brain MRI. CSF was collected and analyzed for metals, amyloid-β (Aβ) 42, total tau (T-tau), and phosphorylated tau (P-tau), and CSF/serum albumin ratios. Statistical analyses were performed using generalized linear models. RESULTS:No significant difference was found between CSF metal levels across diagnostic groups. Higher iron and copper levels were associated with higher CSF levels of Aβ42, T-tau, P-tau, and CSF/serum albumin ratios (p < 0.05). Zinc was associated with higher CSF/serum albumin ratios. There was no significant association between CMBs or cSS and CSF iron levels. An increase in CSF iron with the number of CMBs was seen in APOEɛ4 carriers. CONCLUSION:CSF iron levels are elevated with cerebral microbleeds in APOEɛ4 carriers, with no other association seen with hemorrhagic markers of small vessel disease. The association of elevated CSF iron and copper with tau could represent findings of increased neurodegeneration in these patients. 10.3233/JAD-200656
Iron leakage owing to blood-brain barrier disruption in small vessel disease CADASIL. Uchida Yuto,Kan Hirohito,Sakurai Keita,Arai Nobuyuki,Inui Shohei,Kobayashi Susumu,Kato Daisuke,Ueki Yoshino,Matsukawa Noriyuki Neurology OBJECTIVE:To assess the relationship among iron accumulation, blood-brain barrier (BBB) damage, and cognitive function in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). METHODS:We enrolled 21 patients with mutations and 21 age-matched healthy controls in this cross-sectional study. All participants underwent global physical and cognitive assessments and brain MRI using voxel-based quantitative susceptibility mapping (QSM; iron deposition measure) and dynamic contrast-enhanced MRI (BBB permeability measure). We compared behavioral and imaging data between the groups and analyzed the correlations in each group. RESULTS:Among 21 mutation carriers, 10 were symptomatic and 11 asymptomatic. Montreal Cognitive Assessment scores were significantly different among the groups (symptomatic < asymptomatic < control participants). Voxel-based QSM analysis revealed that the symptomatic group had higher QSM values than did the asymptomatic group in the putamen, caudate nucleus, temporal pole, and centrum semiovale. These QSM values were positively correlated with regional BBB permeabilities (putamen: = 0.57, = 0.006; caudate nucleus: = 0.51, = 0.019; temporal pole: = 0.48, = 0.030; centrum semiovale: = 0.45, = 0.044) and negatively correlated with Montreal Cognitive Assessment scores (caudate nucleus: = -0.53, = 0.012; temporal pole: = -0.56, = 0.008). CONCLUSIONS:This study showed that cerebral iron burden was associated with regional BBB permeability and cognitive dysfunction in patients with CADASIL, highlighting the potential of these imaging techniques as auxiliary biomarkers to monitor the course of small vessel disease. 10.1212/WNL.0000000000010148
Peroxynitrite disrupts endothelial caveolae leading to eNOS uncoupling and diminished flow-mediated dilation in coronary arterioles of diabetic patients. Diabetes Peroxynitrite (ONOO(-)) contributes to coronary microvascular dysfunction in diabetes mellitus (DM). We hypothesized that in DM, ONOO(-) interferes with the function of coronary endothelial caveolae, which plays an important role in nitric oxide (NO)-dependent vasomotor regulation. Flow-mediated dilation (FMD) of coronary arterioles was investigated in DM (n = 41) and non-DM (n = 37) patients undergoing heart surgery. NO-mediated coronary FMD was significantly reduced in DM patients, which was restored by ONOO(-) scavenger, iron-(III)-tetrakis(N-methyl-4'pyridyl)porphyrin-pentachloride, or uric acid, whereas exogenous ONOO(-) reduced FMD in non-DM subjects. Immunoelectron microscopy demonstrated an increased 3-nitrotyrosine formation (ONOO(-)-specific protein nitration) in endothelial plasma membrane in DM, which colocalized with caveolin-1 (Cav-1), the key structural protein of caveolae. The membrane-localized Cav-1 was significantly reduced in DM and also in high glucose-exposed coronary endothelial cells. We also found that DM patients exhibited a decreased number of endothelial caveolae, whereas exogenous ONOO(-) reduced caveolae number. Correspondingly, pharmacological (methyl-β-cyclodextrin) or genetic disruption of caveolae (Cav-1 knockout mice) abolished coronary FMD, which was rescued by sepiapterin, the stable precursor of NO synthase (NOS) cofactor, tetrahydrobiopterin. Sepiapterin also restored coronary FMD in DM patients. Thus, we propose that ONOO(-) selectively targets and disrupts endothelial caveolae, which contributes to NOS uncoupling, and, hence, reduced NO-mediated coronary vasodilation in DM patients. 10.2337/db13-0577
Nitrosyl-hemoglobin formation in rodent and human venous erythrocytes reflects NO formation from the vasculature in vivo. Dei Zotti Flavia,Lobysheva Irina I,Balligand Jean-Luc PloS one Reduced bioavailability of nitric oxide (NO) is a major feature of endothelial dysfunction characteristic of cardiovascular and metabolic diseases but the short half-life of NO precludes its easy quantification in circulating blood for early diagnosis. In erythrocytes, NO can react with hemoglobin to form an iron-nitrosyl complex (5-coordinate-α-HbNO) directly quantifiable by Electron Paramagnetic Resonance spectroscopy (EPR) in mouse, rat and human venous blood ex vivo. However, the sources of the nitrosylating species in vivo and optimal conditions of HbNO preservation for diagnostic use in human erythrocytes are unknown. Using EPR spectroscopy, we found that HbNO stability was significantly higher under hypoxia (equivalent to venous pO2; 12.0±0.2% degradation of HbNO at 30 minutes) than at room air (47.7±0.2% degradation) in intact erythrocytes; at 20°C (15.2±0.3% degradation after 30 min versus 29.6±0.1% at 37°C) and under acidic pH (31.7±0.8% versus 62.2±0.4% degradation after 30 min at physiological pH) at 50% of haematocrit. We next examined the relative contribution of NO synthase (NOS) from the vasculature or in erythrocytes themselves as a source of nitrosylating NO. We detected a NOS activity (and eNOS expression) in human red blood cells (RBC), and in RBCs from eNOS(+/+) (but not eNOS(-/-)) mice, as measured by HbNO formation and nitrite/nitrate accumulation. NO formation was increased after inhibition of arginase but abrogated upon NOS inhibition in human RBC and in RBCs from eNOS(+/+) (but not eNOS(-/-)) mice. However, the HbNO signal from freshly drawn venous RBCs was minimally sensitive to the inhibitors ex vivo, while it was enhanced upon caveolin-1 deletion in vivo, suggesting a minor contribution of erythrocyte NOS to HbNO complex formation compared with vascular endothelial NOS or other paracrine NO sources. We conclude that HbNO formation in rodent and human venous erythrocytes is mainly influenced by vascular NO sources despite the erythrocyte NOS activity, so that its measurement by EPR could serve as a surrogate for NO-dependent endothelial function. 10.1371/journal.pone.0200352
Caveolin-1 ameliorates hepatic injury in non-alcoholic fatty liver disease by inhibiting ferroptosis via the NOX4/ROS/GPX4 pathway. Biochemical pharmacology Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease globally, with a complex and contentious pathogenesis. Caveolin-1 (CAV1) is an important regulator of liver function and can mitigate liver injury by scavenging reactive oxygen species (ROS). Evidence suggests that NOX4 is a source of ROS production, that oxidative stress and ferroptosis are closely related, and that both are involved in the onset and progression of NAFLD. However, whether CAV1 attenuates liver injury in NAFLD caused by high-fat diet via the NOX4/ROS/GPX4 pathway remains unclear. An in vivo fatty liver model was established by feeding mice with a high-fat diet for 16 weeks. In addition, an in vitro fatty liver model was established by incubating AML-12 cells with free fatty acids for 24 h using an in vitro culture method. In our study, it was observed that a high-fat diet induces mitochondrial damage and worsens oxidative stress in NAFLD. This diet also hinders GPX4 expression, leading to an escalation of ferroptosis and lipid accumulation. To counteract these effects, intraperitoneal administration of CSD peptide in mice attenuated the high-fat diet-induced liver mitochondrial damage and ferroptosis. Likewise, overexpression of CAV1 resulted in an increase in GPX4 expression and a reduction in levels of ROS-mediated iron metamorphosis, thus mitigating the progression of the disease. However, the effects of CAV1 on GPX4-mediated ferroptosis and lipid deposition could be reversed by CAV1 small interfering RNA (SiRNA). Finally, NOX4 inhibitor (GLX351322) treatment increased CAV1 siRNA-mediated GPX4 expression and decreased the level of ROS-mediated ferroptosis. These findings suggest a potential mechanism underlying the protective role of CAV1 against high-fat diet-induced hepatotoxicity in NAFLD, shedding new light on the interplay between CAV1, GPX4, and ferroptosis in liver pathology. 10.1016/j.bcp.2024.116594
Erchen decoction alleviates the progression of NAFLD by inhibiting lipid accumulation and iron overload through Caveolin-1 signaling. Journal of ethnopharmacology ETHNOPHARMACOLOGICAL RELEVANCE:A combination of 6 different Chinese herbs known as Erchen decoction (ECD) has been traditionally used to treat digestive tract diseases and found to have a protective effect against nonalcoholic fatty liver disease (NAFLD). Despite its efficacy in treating NAFLD, the precise molecular mechanism by which Erchen Decoction regulated iron ion metabolism to prevent disease progression remained poorly understood. AIM OF STUDY:Our study attempted to confirm the specific mechanism of ECD in reducing lipid and iron in NAFLD from the perspective of regulating the expression of Caveolin-1 (Cav-1). STUDY DESIGN:In our study, the protective effect of ECD was investigated in Palmitic Acid + Oleic Acid-induced hepatocyte NAFLD model and high-fat diet-induced mice NAFLD model. To investigate the impact of Erchen Decoction (ECD) on lipid metabolism and iron metabolism via mediating Cav-1 in vitro, Cav-1 knockdown cell lines were established using lentivirus-mediated transfection techniques. MATERIALS AND METHODS:We constructed NAFLD model by feeding with high-fat diet for 12 weeks in vivo and Palmitic Acid + Oleic Acid treatment for 24 h in vitro. The regulation of Lipid and iron metabolism results by ECD were detected by serological diagnosis, immunofluorescent and immunohistochemical staining, and western blotting. The binding ability of 6 small molecules of ECD to Cav-1 was analyzed by molecular docking. RESULTS:We demonstrated that ECD alleviated the progression of NAFLD by inhibiting lipid accumulation, nitrogen oxygen stress, and iron accumulation in vivo and in vitro experiments. Furthermore, ECD inhibited lipid and iron accumulation in liver by up-regulating the expression of Cav-1, which indicated that Cav-1 was an important target for ECD to exert its curative effect. CONCLUSIONS:In summary, our study demonstrated that ECD alleviated the accumulation of lipid and iron in NAFLD through promoting the expression of Cav-1, and ECD might serve as a novel Cav-1 agonist to treat NAFLD. 10.1016/j.jep.2023.117320
Alleviates Diabetes-Associated Cognitive Dysfunction Through Modulating Neuronal Ferroptosis-Mediated Mitochondrial Homeostasis. Antioxidants & redox signaling Iron metabolism is involved in many biological processes in the brain. Alterations in iron homeostasis have been associated with several neurodegenerative disorders. Instead of stroke and ischemic heart disease, dementia has become the second leading cause of mortality among the type 2 diabetes mellitus (T2DM) population. Therefore, we attempted to investigate the role of ferroptosis in diabetes-associated cognitive dysfunction (DACD). We evaluated ferroptosis hallmarks in the hippocampus of T2DM (high-fat diet/streptozotocin, HFD/STZ) mice, primary hippocampal neurons, as well as in the blood of patients. The results of Gene Set Enrichment Analysis showed significantly differentially expressed genes related to ferroptosis-related pathways between normal control () and leptin receptor-deficient () mice. Here, ferroptosis, mitochondrial dysfunction and cognitive impairment were revealed, and () was significantly downregulated in the hippocampus of T2DM (HFD/STZ) mice. In addition, ferrostatin-1 and restoration neutralized ferroptosis-related symbolic changes, mitochondrial dysfunction, and improved cognitive dysfunction. Notably, the plasma levels of Fe and 4-hydroxynonenal (4-HNE) in T2DM patients showed a tendency to increase compared with those in nondiabetic subjects, and the Fe level was negatively correlated with the cognitive ability in T2DM subjects. For the first time, this study suggested that ferroptosis promoted the progression of DACD induced by T2DM both and , and supported the clinical evidence for the correlation between ferroptosis and T2DM-related DACD, which provided new insights into the potential antioxidant effects of ferroptosis inhibitors and on DACD. The overexpression of may attenuate DACD by modulating neuronal ferroptosis-mediated mitochondrial homeostasis. We put on the spotlight as a promising candidate to prevent DACD. 37, 867-886. 10.1089/ars.2021.0233
Validation by Magnetic Resonance Imaging of the Diagnostic Potential of a Heptapeptide-Functionalized Imaging Probe Targeted to Amyloid-β and Able to Cross the Blood-Brain Barrier. André Séverine,Ansciaux Emilie,Saidi Elamine,Larbanoix Lionel,Stanicki Dimitri,Nonclercq Denis,Vander Elst Luce,Laurent Sophie,Muller Robert N,Burtea Carmen Journal of Alzheimer's disease : JAD The diagnosis of Alzheimer's disease (AD) is a critical step in the management of patients. We have developed a non-invasive diagnosis tool based on magnetic resonance molecular imaging (MRMI) of amyloid-β peptide using ultra-small particles of iron oxide (USPIO) functionalized with a disulfide constrained cyclic heptapeptide (PHO) identified by phage display (USPIO-PHO). After previously demonstrating the optimal pharmacologic properties of USPIO-PHO and its capacity to cross the blood-brain barrier (BBB), the ability of USPIO-PHO to target amyloid plaques (AP) by MRMI has been validated in the present work on AD transgenic mice. The immunohistochemistry and immunofluorescent detection of USPIO-PHO on brain sections collected after in vivo MRMI studies enabled its colocalization with AP, confirming the BBB passage and specific targeting. The AP targeting by USPIO-PHO has been moreover corroborated by the good correlation between the number of AP detected with anti-amyloid β antibody and Perls'-DAB staining. Finally, the crossing mechanism of USPIO-PHO through the BBB was elucidated, revealing the involvement of non-degradation pathway of caveolae, while the control contrast agent USPIO-PEG was not endocytosed by the human brain endothelial cells. 10.3233/JAD-170563
Caveolin-1 is a competitive inhibitor of heme oxygenase-1 (HO-1) with heme: identification of a minimum sequence in caveolin-1 for binding to HO-1. Taira Junichi,Sugishima Masakazu,Kida Yutaka,Oda Eriko,Noguchi Masato,Higashimoto Yuichiro Biochemistry Heme oxygenase (HO) catalyzes the O(2)-dependent degradation of heme to biliverdin IXα, carbon monoxide (CO), and free ferrous iron through a multistep mechanism. Electrons required for HO catalysis in mammals are provided by NADPH-cytochrome P450 reductase. Recently, Kim et al. reported for the first time that HO, especially inducible HO-1, appears in caveolae and showed that caveolin-1, a principal isoform of the caveolin family, physically interacts with HO-1 [ Jung , N. H. et al. ( 2003 ) IUBMB Life 55 , 525 - 532 ; Kim , H. P. et al. ( 2004 ) FASEB J. 18 , 1080 - 1089 ]. In the present study, we confirmed by immunoprecipitation experiments that rat HO-1 and rat caveolin-1 (residues 1-101) directly interact with each other and that the HO-1 activity is inhibited by caveolin-1 (1-101). The 82-101 residues of caveolin-1 (CAV(82-101)), called the caveolin scaffolding domain, play essential roles in caveolin-related protein-protein interactions. The HO-1 activity is also inhibited by CAV(82-101) in a competitive manner with hemin, and a hemin titration experiment showed that CAV(82-101) interferes with hemin binding to HO-1. The enzyme kinetics and surface plasmon resonance experiments gave comparable K(i) and K(D) values of 5.2 and 1.0 μM for CAV(82-101), respectively, with respect to the interaction with HO-1. These observations indicated that CAV(82-101) and hemin share a common binding site within the HO-1 protein. The identified caveolin binding motif (FLLNIELF) of rat HO-1 is incomplete compared to the proposed consensus sequence. The affinity between HO-1 and CAV(82-101), however, was almost completely or remarkably eliminated by replacement of Phe(207) and/or Phe(214) with Ala, indicating that HO-1 binds to caveolin-1 via this motif. Among the peptide fragments derived from CAV(82-101), i.e., CAV(82-91), CAV(87-96), CAV(92-101), and CAV(97-101), CAV(92-101) and CAV(97-101) are able to inhibit the HO-1 activity to a similar extent; thus, the five-amino acid sequence (residues 97-101) is considered to be a minimum sequence for binding to HO-1. 10.1021/bi200601t
Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey. Simionescu Maya,Gafencu Anca,Antohe Felicia Microscopy research and technique The modern exploration of endothelial cell biology is a largely interdisciplinary exercise. Cell biological, physiological, and more recently molecular biology approaches were used to study the pathways and the organelles involved in transcytosis of macromolecules in endothelial cell (EC). Here we discuss mainly the cell biological findings that revealed that EC have the attributes to fulfill the transport function. They are polarized cells, heterogeneous, and, thus, structurally and functionally adapted to the vascular bed in which they reside. The structural heterogeneity involves the number and distribution of plasmalemmal vesicles (caveolae), their generated channels, and the organization of intercellular junctions. The closely related functional heterogeneity comprises the degree of permeability for plasma molecules that vary as a function of organ. The EC are endowed with the cellular machinery to perform (1) endocytosis, that is to take up plasma proteins and the molecules they carry to be used for themselves (cholesterol-carrying low density lipoproteins, fatty acid carrying albumin, iron carrying transferrin, etc.), and (2) transcytosis, which implies to transport plasma proteins to the subjacent cells and tissues. The possible pathways for transport of molecules are transcellular, via caveolae and channels, and paracellular via intercellular junctions. Most of the results obtained, so far, indicate that transcytosis of albumin, low-density lipoproteins, metaloproteases, and insulin, is performed by cargo-vesicles and their generated channels. The paracellular pathway can be used for water and ions; in postcapillary venules, at the level of which approximately 30% of junctions are open to a space of 6 nm, small molecules may take this route. Recent data obtained by molecular biology techniques revealed that caveolae are endowed with the molecular machinery for fusion/fission, docking, and movement across cells. Moreover, the various and numerous molecules that have been detected in the caveolae membrane and the different functions assumed by this differentiated microdomain strengthen the postulate that there are at least two or more types of vesicles molecularly tailored for the local physiological requirements. 10.1002/jemt.10086
Remyelinating effect driven by transferrin-loaded extracellular vesicles. Glia Extracellular vesicles (EVs) are involved in diverse cellular functions, playing a significant role in cell-to-cell communication in both physiological conditions and pathological scenarios. Therefore, EVs represent a promising therapeutic strategy. Oligodendrocytes (OLs) are myelinating glial cells developed from oligodendrocyte progenitor cells (OPCs) and damaged in chronic demyelinating diseases such as multiple sclerosis (MS). Glycoprotein transferrin (Tf) plays a critical role in iron homeostasis and has pro-differentiating effects on OLs in vivo and in vitro. In the current work, we evaluated the use of EVs as transporters of Tf to the central nervous system (CNS) through the intranasal (IN) route. For the in vitro mechanistic studies, we used rat plasma EVs. Our results show that EVTf enter OPCs through clathrin-caveolae and cholesterol-rich lipid raft endocytic pathways, releasing the cargo and exerting a pro-maturation effect on OPCs. These effects were also observed in vivo using the animal model of demyelination induced by cuprizone (CPZ). In this model, IN administered Tf-loaded EVs isolated from mouse plasma reached the brain parenchyma, internalizing into OPCs, promoting their differentiation, and accelerating remyelination. Furthermore, in vivo experiments demonstrated that EVs protected the Tf cargo and significantly reduced the amount of Tf required to induce remyelination as compared to soluble Tf. Collectively, these findings unveil EVs as functional nanocarriers of Tf to induce remyelination. 10.1002/glia.24478
Caveolae and the oxidative stress response. Biochemical Society transactions Oxidative stress is a feature of many disease conditions. Oxidative stress can activate a number of cellular pathways leading to cell death, including a distinct iron-dependent pathway involving lipid peroxidation, termed ferroptosis, but cells have evolved complex mechanisms to respond to these stresses. Here, we briefly summarise current evidence linking caveolae to the cellular oxidative stress response. We discuss recent studies in cultured cells and in an in vivo model suggesting that lipid peroxidation driven by oxidative stress causes disassembly of caveolae to release caveola proteins into the cell where they regulate the master transcriptional redox controller, nuclear factor erythroid 2-related factor 2. These studies suggest that caveolae maintain cellular susceptibility to oxidative stress-induced cell death and suggest a crucial role in cellular homeostasis and the response to wounding. 10.1042/BST20230121
Native Ion Mobility-Mass Spectrometry-Enabled Fast Structural Interrogation of Labile Protein Surface Modifications at the Intact Protein Level. Li Gongyu,Phetsanthad Ashley,Ma Min,Yu Qinying,Nair Ashita,Zheng Zhen,Ma Fengfei,DeLaney Kellen,Hong Seungpyo,Li Lingjun Analytical chemistry Protein sialylation has been closely linked to many diseases including Alzheimer's disease (AD). It is also broadly implicated in therapeutics operating in a pattern-dependent (e.g., Neu5Ac vs Neu5Gc) manner. However, how the sialylation pattern affects the AD-associated, transferrin-assisted iron/Aβ cellular uptake process remains largely ill-defined. Herein, we report the use of native ion mobility-mass spectrometry (IM-MS)-based fast structural probing methodology, enabling well-controlled, synergistic, and in situ manipulation of mature glycoproteins and attached sialic acids. IM-MS-centered experiments enable the combinatorial interrogation of sialylation effects on Aβ cytotoxicity and the chemical, conformational, and topological stabilities of transferrin. Cell viability experiments suggest that Neu5Gc replacement enhances the transferrin-assisted, iron loading-associated Aβ cytotoxicity. Native gel electrophoresis and IM-MS reveal that sialylation stabilizes transferrin conformation but inhibits its dimerization. Collectively, IM-MS is adapted to capture key sialylation intermediates involved in fine-tuning AD-associated glycoprotein structural microheterogeneity. Our results provide the molecular basis for the importance of sustaining moderate TF sialylation levels, especially Neu5Ac, in promoting iron cellular transportation and rescuing iron-enhanced Aβ cytotoxicity. 10.1021/acs.analchem.1c04503
Increasing brain N-acetylneuraminic acid alleviates hydrocephalus-induced neurological deficits. CNS neuroscience & therapeutics AIMS:This metabolomic study aimed to evaluate the role of N-acetylneuraminic acid (Neu5Ac) in the neurological deficits of normal pressure hydrocephalus (NPH) and its potential therapeutic effect. METHODS:We analyzed the metabolic profiles of NPH using cerebrospinal fluid with multivariate and univariate statistical analyses in a set of 42 NPH patients and 38 controls. We further correlated the levels of differential metabolites with severity-related clinical parameters, including the normal pressure hydrocephalus grading scale (NPHGS). We then established kaolin-induced hydrocephalus in mice and treated them using N-acetylmannosamine (ManNAc), a precursor of Neu5Ac. We examined brain Neu5Ac, astrocyte polarization, demyelination, and neurobehavioral outcomes to explore its therapeutic effect. RESULTS:Three metabolites were significantly altered in NPH patients. Only decreased Neu5Ac levels were correlated with NPHGS scores. Decreased brain Neu5Ac levels have been observed in hydrocephalic mice. Increasing brain Neu5Ac by ManNAc suppressed the activation of astrocytes and promoted their transition from A1 to A2 polarization. ManNAc also attenuated the periventricular white matter demyelination and improved neurobehavioral outcomes in hydrocephalic mice. CONCLUSION:Increasing brain Neu5Ac improved the neurological outcomes associated with the regulation of astrocyte polarization and the suppression of demyelination in hydrocephalic mice, which may be a potential therapeutic strategy for NPH. 10.1111/cns.14253
Functional Metabolomics Characterizes a Key Role for -Acetylneuraminic Acid in Coronary Artery Diseases. Zhang Lei,Wei Ting-Ting,Li Yong,Li Jing,Fan Yong,Huang Feng-Qing,Cai Yuan-Yuan,Ma Gaoxiang,Liu Jin-Feng,Chen Qian-Qian,Wang Shi-Lei,Li Honglin,Alolga Raphael N,Liu Baolin,Zhao Dong-Sheng,Shen Jian-Hua,Wang Xiang-Ming,Zhu Wei,Li Ping,Qi Lian-Wen Circulation BACKGROUND:As new biomarkers of coronary artery diseases (CAD) emerge via metabolomics, the underlying functional mechanisms remain to be elucidated. Functional metabolomics aims to translate metabolomics-derived biomarkers to disease mechanisms. METHODS:A cohort of 2324 patients who underwent coronary angiography from 4 independent centers was studied. A combination of ultra-performance liquid chromatography and quadrupole time-of-flight mass spectrometry in the negative ion mode was used for untargeted analysis of metabolites in plasma. Significant differential metabolites were identified by cross-comparisons with and within CAD types, including normal coronary artery, nonobstructvie coronary atherosclerosis, stable angina, unstable angina, and acute myocardial infarction. A tandem liquid chromatography-mass spectrometry-based approach using isotope-labeled standard addition was subsequently performed for targeted analysis of the metabolic marker -acetylneuraminic acid (Neu5Ac). A functional metabolomics strategy was proposed to investigate the role of Neu5Ac in the progression of CAD by using in vitro and in vivo models. RESULTS:We identified a total of 36 differential metabolites, 35 of which were confirmed with reference compounds. Elevation of Neu5Ac was observed in plasma during CAD progression in center 1 (=4.0e-64, n=2019) and replicated in 3 independent centers (n=305). The increased level of Neu5Ac in plasma was confirmed by accurate targeted quantification. Mechanistically, Neu5Ac was able to trigger myocardial injury in vitro and in vivo by activation of the Rho/Rho-associated coiled-coil containing protein kinase signaling pathway through binding to RhoA and Cdc42, but not Rac1. Silencing neuraminidase-1, the enzyme that regulates Neu5Ac generation, ameliorated oxygen-glucose deprivation-induced injury in cardiomyocytes and ligation/isoprenaline-induced myocardial ischemia injury in rats. Pharmacological inhibition of neuraminidase by anti-influenza drugs, oseltamivir and zanamivir, also protected cardiomyocytes and the heart from myocardial injury. CONCLUSIONS:Functional metabolomics identified a key role for Neu5Ac in acute myocardial infarction, and targeting neuraminidase-1 may represent an unrecognized therapeutic intervention for CAD. 10.1161/CIRCULATIONAHA.117.031139
Elevated concentrations of Neu5Ac and Neu5,9Ac in human plasma: potential biomarkers of cardiovascular disease. Glycoconjugate journal Cardiovascular disease (CVD) is a group of health conditions affecting the heart and vascular system with very high prevalence and mortality rates. The presence of CVD is characterised by high levels of inflammation which have previously been associated with increased plasma concentrations of N-acetyl neuraminic acid (Neu5Ac). While Neu5Ac has been studied in the context of CVD, Neu5,9Ac has not, despite being the second most abundant sialic acid in human plasma. A small-scale pilot study of thirty plasma samples from patients with diagnosed CVD, and thirty age and sex-matched healthy controls, was designed to gain insight into sialic acids as biomarkers for CVD and potential future areas of study. Each sample was assayed for Neu5Ac and Neu5,9Ac concentrations. Mean Neu5Ac and Neu5,9Ac concentrations were significantly elevated in patients with CVD compared to healthy controls (Neu5Ac: P < 0.001; Neu5,9Ac: P < 0.04). Receiver operator curve (ROC) analysis indicated that both Neu5Ac and Neu5,9Ac have reasonable predictive power for the presence of CVD (Neu5Ac AUC: 0.86; Neu5,9Ac AUC: 0.71). However, while Neu5Ac had both good sensitivity (0.82) and specificity (0.81), Neu5,9Ac had equivalent specificity (0.81) but very poor sensitivity (0.44). A combination marker of Neu5Ac + Neu5,9Ac showed improvement over Neu5Ac alone in terms of predictive power (AUC: 0.93), sensitivity (0.87), and specificity (0.90). Comparison to a known inflammatory marker, high sensitivity c-reactive protein (hs-CRP: P-value: NS, ROC:0.50) was carried out, showing that both Neu5Ac and Neu5,9Ac outperformed this marker. Further to this, hs-CRP values were combined with the three different sialic acid markers to determine any effect on the AUC values. A slight improvement in AUC was noted for each of the combinations, with Neu5Ac + Neu5,9Ac + hs-CRP giving the best AUC of 0.97 overall. Thus, Neu5Ac would appear to offer good potential as a predictive marker for the presence of CVD, which the addition of Neu5,9Ac predictive power improves, with further improvement seen by the addition of hs-CRP. 10.1007/s10719-023-10138-3
Dietary Neu5Ac Intervention Protects Against Atherosclerosis Associated With Human-Like Neu5Gc Loss-Brief Report. Arteriosclerosis, thrombosis, and vascular biology Objective:Species-specific pseudogenization of the CMAH gene during human evolution eliminated common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc) biosynthesis from its precursor N-acetylneuraminic acid (Neu5Ac). With metabolic nonhuman Neu5Gc incorporation into endothelia from red meat, the major dietary source, anti-Neu5Gc antibodies appeared. Human-like Ldlr-/-Cmah-/- mice on a high-fat diet supplemented with a Neu5Gc-enriched mucin, to mimic human red meat consumption, suffered increased atherosclerosis if human-like anti-Neu5Gc antibodies were elicited. Approach and Results:We now ask whether interventional Neu5Ac feeding attenuates metabolically incorporated Neu5Gc-mediated inflammatory acceleration of atherogenesis in this Cmah-/-Ldlr-/- model system. Switching to a Neu5Gc-free high-fat diet or adding a 5-fold excess of Collocalia mucoid-derived Neu5Ac in high-fat diet protects against accelerated atherosclerosis. Switching completely from a Neu5Gc-rich to a Neu5Ac-rich diet further reduces severity. Remarkably, feeding Neu5Ac-enriched high-fat diet alone has a substantial intrinsic protective effect against atherosclerosis in Ldlr-/- mice even in the absence of dietary Neu5Gc but only in the human-like Cmah-null background. Conclusions:Interventional Neu5Ac feeding can mitigate or prevent the red meat/Neu5Gc-mediated increased risk for atherosclerosis, and has an intrinsic protective effect, even in the absence of Neu5Gc feeding. These findings suggest that similar interventions should be tried in humans and that Neu5Ac-enriched diets alone should also be investigated further. 10.1161/ATVBAHA.120.315280
Metabolite Neu5Ac triggers SLC3A2 degradation promoting vascular endothelial ferroptosis and aggravates atherosclerosis progression in ApoEmice. Theranostics Atherosclerosis (AS) is still the major cause of cardiovascular disease (CVD) as well as stroke. Endothelial metabolic disorder has been found to be activated and then promote endothelial cells (ECs) injury, which is regarded to initiate AS progression. N-acetylneuraminic acid (Neu5Ac), a metabolite produced by hexosamine-sialic acid pathway branching from glucose metabolism, was presented as a notable biomarker of CVD and is positively correlated with ECs function. However, few studies explain whether Neu5Ac regulate AS progression by affecting EC function as well as its involved mechanisms are still unknown. Here, we mimicked an animal model in mice which displaying similar plasma Neu5Ac levels with AS model to investigate its effect on AS progression. We found that Neu5Ac exacerbated plaques area and increased lipids in plasma in absence of HFD feeding, and ECs inflammatory injury was supposed as the triggering factor upon Neu5Ac treatment with increasing expression of IL-1β, ICAM-1, and promoting ability of monocyte adhesion to ECs. Mechanistic studies showed that Neu5Ac facilitated SLC3A2 binding to ubiquitin and then triggered P62 mediated degradation, further leading to accumulation of lipid peroxidation in ECs. Fer-1 could inhibit ECs injury and reverse AS progression induced by Neu5Ac in mice. Interestingly, mitochondrial dysfunction was also partly participated in ECs injury after Neu5Ac treatment and been reversed by Fer-1. Together, our study unveils a new mechanism by which evaluated metabolite Neu5Ac could promote SLC3A2 associated endothelial ferroptosis to activate ECs injury and AS plaque progression, thus providing a new insight into the role of Neu5Ac-ferroptosis pathway in AS. Also, our research revealed that pharmacological inhibition of ferroptosis may provide a novel therapeutic strategy for premature AS. 10.7150/thno.87968