
TMBIM6 promotes diabetic tubular epithelial cell survival and albumin endocytosis by inhibiting the endoplasmic reticulum stress sensor, IRE1α.
Molecular biology reports
AIM:Reduced albumin reabsorption in proximal tubular epithelial cells (PTECs), resulting from decreased megalin plasma membrane (PM) localization due to prolonged endoplasmic reticulum (ER) stress, potentially contributes to albuminuria in early diabetic kidney disease (DKD). To examine this possibility, we investigated the cytoprotective effect of TMBIM6 in promoting diabetic PTEC survival and albumin endocytosis by attenuating ER stress with an IRE1α inhibitor, KIRA6. METHODS AND RESULTS:Renal TMBIM6 distribution and expression were determined by immunohistochemistry, western blotting, and qPCR, whereas tubular injury was evaluated in db/db mice. High-glucose (HG)-treated HK-2 cells were either treated with KIRA6 or transduced with a lentiviral vector for TMBIM6 overexpression. ER stress was measured by western blotting and ER-Tracker Red staining, whereas apoptosis was determined by performing TUNEL assays. Megalin expression was measured by immunofluorescence, and albumin endocytosis was evaluated after incubating cells with FITC-labeled albumin. Tubular injury and TMBIM6 downregulation occurred in db/db mouse renal cortical tissues. Both KIRA6 treatment and TMBIM6 overexpression inhibited ER stress by decreasing the levels of phosphorylated IRE1α, XBP1s, GRP78, and CHOP, and stabilizing ER expansion in HG-treated HK-2 cells. TUNEL assays performed with KIRA6-treated or TMBIM6-overexpressing cells showed a significant decrease in apoptosis, consistent with the significant downregulation of BAX and upregulation of BCL-2, as measured by immunoblotting. Both KIRA6 and TMBIM6 overexpression promoted megalin PM localization and restored albumin endocytosis in HG-treated HK-2 cells. CONCLUSION:TMBIM6 promoted diabetic PTEC survival and albumin endocytosis by negatively regulating the IRE1α branch of ER stress.
10.1007/s11033-022-07744-z
Megalin mediates plasma membrane to mitochondria cross-talk and regulates mitochondrial metabolism.
Cellular and molecular life sciences : CMLS
Mitochondrial intracrines are extracellular signaling proteins, targeted to the mitochondria. The pathway for mitochondrial targeting of mitochondrial intracrines and actions in the mitochondria remains unknown. Megalin/LRP2 mediates the uptake of vitamins and proteins, and is critical for clearance of amyloid-β protein from the brain. Megalin mutations underlie the pathogenesis of Donnai-Barrow and Lowe syndromes, characterized by brain defects and kidney dysfunction; megalin was not previously known to reside in the mitochondria. Here, we show megalin is present in the mitochondria and associates with mitochondrial anti-oxidant proteins SIRT3 and stanniocalcin-1 (STC1). Megalin shuttles extracellularly-applied STC1, angiotensin II and TGF-β to the mitochondria through the retrograde early endosome-to-Golgi transport pathway and Rab32. Megalin knockout in cultured cells impairs glycolytic and respiratory capacities. Thus, megalin is critical for mitochondrial biology; mitochondrial intracrine signaling is a continuum of the retrograde early endosome-to-Golgi-Rab32 pathway and defects in this pathway may underlie disease processes in many systems.
10.1007/s00018-018-2847-3
Interactions between leucines within the signal peptides of megalin and stanniocalcin-1 are crucial for regulation of mitochondrial metabolism.
Laboratory investigation; a journal of technical methods and pathology
The mitochondrial intracrine Stanniocalcin 1 (STC1) activates mitochondrial anti-oxidant defenses. LRP2 (megalin) shuttles STC1 to the mitochondria through retrograde early endosome-to-Golgi- and Rab32-mediated pathway, and LRP2 KO impairs mitochondrial respiration and glycolysis. We determined STC1-LRP2 interaction domains using HA- and FLAG-tagged fragments of STC1 and LRP2, respectively, co-expressed in HEK293T cells. The trans-membrane domain of LRP2 is required for trafficking to the mitochondria. STC1-FLAG expressed in LRP2 KO cells fails to reach the mitochondria; thus, mitochondrial STC1 is extracellularly-derived via LRP2-mediated trafficking. Tri-leucines L12-14 in LRP2's signal peptide interact with STC1's signal peptide. Mutant LRP2 (L(12-14)A) does not bind STC1, while hSTC1 lacking signal peptide or Leucines L8/9/11 does not bind LRP2. STC1 fails to induce respiration or glycolysis in megalin KO mouse embryonal fibroblasts (MEF) expressing mutant LRP2, while mutant hSTC1 (L8/L9/L11 - > A8/A9/A11) fails to reach the mitochondria or induce respiration and glycolysis in WT MEF. Our data suggest direct regulation of mitochondrial metabolism by extracellular cues and reveal an important role for signal peptides' leucines in protein-protein interactions and mitochondrial biology.
10.1038/s41374-022-00729-3
The receptor-associated protein (RAP) interacts with several resident proteins of the endoplasmic reticulum including a glycoprotein related to actin.
Sarti M,Farquhar M G,Orlando R A
Experimental cell research
The receptor-associated protein (RAP) is a chaperone found primarily in the endoplasmic reticulum (ER) that plays a necessary role in the folding and exocytic trafficking of members of the LDL receptor gene family including megalin and the LDL receptor-related protein (LRP). Recently, RAP has been shown to interact with a growing number of proteins including several that are unrelated to the LDL receptor family as well as new members of this rapidly expanding family. Based on these observations, we have applied chemical crosslinking procedures to identify additional novel RAP-interacting proteins, and thereby better characterize the scope of RAP's ER-related function. In this study, we have identified eight proteins with molecular weights of 32, 35, 46, 55, 70, 95, 170, and 200 kDa that interact with endogenous RAP. These proteins were found to associate with RAP in multiple cell types from different species, suggesting that their expression and interactions with RAP are ubiquitous. Results of pulse-chase experiments show that most of the proteins remain sensitive to endoglycosidase-H digestion, and also remain stably associated with RAP over an extended period, suggesting that they are ER resident proteins. All of the RAP-associated proteins appear to be largely soluble as they partition into the aqueous phase following TX-114 detergent extraction. Sequence analysis and immunoblotting of the 46-kDa RAP-associated glycoprotein (gp46) shows that it is structurally and immunologically related to actin. If gp46 is also functionally related to actin as an intracellular structural protein, it may represent a novel component of the putative ER matrix.
10.1006/excr.2000.4993
Clathrin and clathrin adaptor AP-1 control apical trafficking of megalin in the biosynthetic and recycling routes.
Gravotta Diego,Perez Bay Andres,Jonker Caspar T H,Zager Patrick J,Benedicto Ignacio,Schreiner Ryan,Caceres Paulo S,Rodriguez-Boulan Enrique
Molecular biology of the cell
Megalin (gp330, LRP-2) is a protein structurally related to the low-density lipoprotein receptor family that displays a large luminal domain with multiligand binding properties. Megalin localizes to the apical surface of multiple epithelia, where it participates in endocytosis of a variety of ligands performing roles important for development or homeostasis. We recently described the apical recycling pathway of megalin in Madin-Darby canine kidney (MDCK) cells and found that it is a long-lived, fast recycling receptor with a recycling turnover of 15 min and a half-life of 4.8 h. Previous work implicated clathrin and clathrin adaptors in the polarized trafficking of fast recycling basolateral receptors. Hence, here we study the role of clathrin and clathrin adaptors in megalin's apical localization and trafficking. Targeted silencing of clathrin or the γ1 subunit of clathrin adaptor AP-1 by RNA interference in MDCK cells disrupted apical localization of megalin, causing its redistribution to the basolateral membrane. In contrast, silencing of the γ2 subunit of AP-1 had no effect on megalin polarity. Trafficking assays we developed using FM4-HA-miniMegalin-GFP, a reversible conditional endoplasmic reticulum-retained chimera, revealed that clathrin and AP-1 silencing disrupted apical sorting of megalin in both biosynthetic and recycling routes. Our experiments demonstrate that clathrin and AP-1 control the sorting of an apical transmembrane protein.
10.1091/mbc.E18-12-0811
TSH-Dependent expression of the LDL receptor-associated protein (RAP) in thyroid epithelial cells.
Botta Roberta,Lisi Simonetta,Pinchera Aldo,Segnani Cristina,Cianferotti Luisella,Altea Maria Antonietta,Menconi Francesca,Mattii Letizia,Corsini Giovanni Umberto,Marcocci Claudio,Dolfi Amelio,Bernardini Nunzia,Marinò Michele
Thyroid : official journal of the American Thyroid Association
The low density lipoprotein (LDL) receptor-associated protein (RAP) is an endoplasmic reticulum (ER)-resident molecular chaperone for several LDL receptor family members and it also binds to thyroglobulin (Tg), the thyroid hormone precursor. Disruption of the RAP gene in thyrocytes results in impaired Tg secretion. To gain further insights into the function of RAP in the thyroid, we investigated whether its expression in thyrocytes is regulated by thyroid-stimulating hormone (TSH), a feature common to all proteins involved in thyroid hormone secretion. We found by immunofluorescence that in FRTL-5 cells cultured in the presence of TSH, RAP is expressed intracellularly. The levels of expression increased after exposure to TSH, beginning at 48 hours, in a concentration-dependent manner as observed by immunofluorescence and Western blotting. Expression of RAP was also increased by TSH in primary cultures of human thyrocytes as observed by Western blotting. In hypothyroid mice with high serum TSH, RAP was markedly increased compared with euthyroid mice as observed by immunohistochemistry and Western blotting. Based on these findings, we concluded that RAP is expressed by thyrocytes in a TSH-dependent manner, both in cultured thyroid cells and in vivo.
10.1089/thy.2006.16.1097
Intracellular retention of thyroglobulin in the absence of the low-density lipoprotein receptor-associated protein (RAP) is likely due to premature binding to megalin in the biosynthetic pathway.
Lisi S,Botta R,Rotondo Dottore G,Leo M,Latrofa F,Vitti P,Marinò M
Journal of endocrinological investigation
OBJECTIVE:The low-density lipoprotein receptor associated protein (RAP) is expressed by thyroid epithelial cells (TEC) in a TSH-dependent manner. In the thyroid RAP functions as a molecular chaperone for the thyroglobulin (Tg) endocytic receptor megalin/LRP2, which is retained intracellularly in RAP KO mice rather than being expressed on the apical membrane of TEC, its usual location. RAP binds also to Tg, which is also retained intracellularly in RAP KO mice, thereby suggesting a role of RAP in Tg secretion. Here we investigated whether Tg intracellular retention in the absence of RAP is due to premature Tg-megalin interactions during the biosynthetic pathway or to a direct action of RAP on Tg secretion. METHODS:We performed immunoprecipitation experiments in thyroid extracts from RAP KO and WT mice. In addition, we investigated Tg secretion in COS-7 cells co-transfected with human RAP (hRAP) and mouse Tg (mTg). RESULTS:An anti-megalin megalin precipitated greater amounts of Tg in thyroid extracts from RAP KO than from WT mice, suggesting increased intracellular interactions between megalin and Tg in the absence of RAP. COS-7 cells transiently transfected with hRAP, mTg or both, expressed the two proteins accordingly. RAP was found almost exclusively in cell extracts, whereas Tg was found both in extracts and media, as expected from the knowledge that RAP is ER-resident and that Tg is secreted. Regardless of whether cells were transfected with mTg alone or were co-transfected with hRAP, similar proportions of the total Tg synthesized were detected in cell extracts and media. CONCLUSIONS:The intracellular retention of Tg in the absence of RAP is likely due to its premature interaction with megalin, whereas RAP does not seem to affect Tg secretion directly.
10.1007/s40618-016-0464-2
Defective thyroglobulin storage in LDL receptor-associated protein-deficient mice.
Lisi Simonetta,Botta Roberta,Pinchera Aldo,Collins A Bernard,Refetoff Samuel,Arvan Peter,Bu Guojun,Grasso Lucia,Marshansky Vladimir,Bechoua Shaliha,Hurtado-Lorenzo Andres,Marcocci Claudio,Brown Dennis,McCluskey Robert T,Marinò Michele
American journal of physiology. Cell physiology
The molecular chaperone receptor-associated protein (RAP) is required for biosynthesis of megalin, an endocytic receptor for follicular thyroglobulin (Tg), the thyroid hormone precursor. RAP also binds to Tg itself, suggesting that it may affect Tg trafficking in various manners. To elucidate RAP function, we have studied the thyroid phenotype in RAP-knockout (RAP-KO) mice and found a reduction of Tg aggregates into thyroid follicles. Serum Tg levels were significantly increased compared with those of wild-type (WT) mice, suggesting a directional alteration of Tg secretion. In spite of these abnormalities, hormone secretion was maintained as indicated by normal serum thyroxine levels. Because Tg in thyroid extracts from RAP-KO mice contained thyroxine residues as in WT mice, we concluded that in RAP-KO mice, follicular Tg, although reduced, was nevertheless sufficient to provide normal hormone secretion. Serum TSH was increased in RAP-KO mice, and although no thyroid enlargement was observed, some histological features resembling early goiter were present. Megalin was decreased in RAP-KO mice, but this did not affect thyroid function, probably because of the concomitant reduction of follicular Tg. In conclusion, RAP is required for the establishment of Tg reservoirs, but its absence does not affect hormone secretion.
10.1152/ajpcell.00382.2005
Thyroid dysfunction in megalin deficient mice.
Lisi Simonetta,Segnani Cristina,Mattii Letizia,Botta Roberta,Marcocci Claudio,Dolfi Amelio,McCluskey Robert T,Pinchera Aldo,Bernardini Nunzia,Marinò Michele
Molecular and cellular endocrinology
Megalin mediates transcytosis of thyroglobulin (Tg), the thyroid hormone precursor, resulting in its passage into the bloodstream. The process involves especially hormone-poor Tg, which may favour hormone secretion by preventing competition with hormone-rich Tg for proteolytic degradation. To gain more insight into the role of megalin, here we studied thyroid function and histology in megalin deficient mice compared with WT mice. As expected from the knowledge that megalin mediates Tg transcytosis, serum Tg levels were significantly reduced in homozygous (megalin-/-) mice, which, more importantly, were found to be hypothyroid, as demonstrated by significantly reduced serum free thyroxine and significantly increased serum thyroid stimulating hormone (TSH) levels. In heterozygous (megalin+/-) mice, in which megalin expression was normal, thyroid function was unaffected. Although the serological phenotype in megalin-/- mice was not associated with histological alterations or goiter, our results support a major role of megalin in thyroid hormone secretion.
10.1016/j.mce.2005.03.009
Preferential megalin-mediated transcytosis of low-hormonogenic thyroglobulin: a control mechanism for thyroid hormone release.
Lisi Simonetta,Pinchera Aldo,McCluskey Robert T,Willnow Thomas E,Refetoff Samuel,Marcocci Claudio,Vitti Paolo,Menconi Francesca,Grasso Lucia,Luchetti Fabiana,Collins A Bernard,Marino Michele
Proceedings of the National Academy of Sciences of the United States of America
Hormone secretion by thyrocytes occurs by fluid phase uptake and lysosomal degradation of the prohormone thyroglobulin (Tg). However, some Tg internalized by megalin bypasses lysosomes and is transcytosed across cells and released into the bloodstream. Because the hormone content of Tg is variable, we investigated whether this affects transcytosis. We found that rat Tg with a low hormone content [low-hormonogenic rat Tg (low-horm-rTg)] is transcytosed by megalin across thyroid FRTL-5 cells to a greater extent than rat Tg with a high hormone content [hormonogenic rat Tg (horm-rTg)]. In immunoprecipitation experiments, the Tg sequence Arg-2489-Lys-2503 (required for binding to megalin and heparan sulfate proteoglycans) was found to be more exposed in low-horm-rTg, which accounted for its preferential transcytosis. Thus, removal of surface heparan sulfate proteoglycans from FRTL-5 cells or blocking of 2489-2503 reduced transcytosis of low-horm-rTg to a greater extent than that of horm-rTg. Preferential transcytosis of low-horm-rTg affected hormone release. Thus, the increase in hormone release from horm-rTg in FRTL-5 cells determined by megalin blocking (due to reduced transcytosis and enhanced Tg degradation) was rescued by low-horm-rTg, suggesting that megalin is required for effective hormone release. This finding was confirmed in a small number of megalin-deficient mice, which had serological features resembling mild hypothyroidism. Reduced hormone formation within Tg in vivo, due to treatment of rats with aminotriazole or of patients with Graves' disease with methimazole, resulted in increased Tg transcytosis via megalin, in confirmation of results with FRTL-5 cells. Our study points to a major role of megalin in thyroid homeostasis with possible implications in thyroid diseases.
10.1073/pnas.2432267100
Targeting of thyroglobulin to transcytosis following megalin-mediated endocytosis: evidence for a preferential pH-independent pathway.
Marinò M,Lisi S,Pinchera A,Chiovato L,McCluskey R T
Journal of endocrinological investigation
TG internalized from the colloid by megalin, bypasses the lysosomal pathway and is transported across thyrocytes by transcytosis. Although most of the intracellular mechanisms responsible for targeting of ligands to transcytosis are unknown, for certain ligands a role of lysosomal pH has been established. Thus, ligands that undergo lysosomal degradation dissociate from their receptors due to the low pH of endosomes, whereas certain ligands that undergo transcytosis fail to dissociate because they bind to their receptors at acidic pH. Here we studied the role of pH in TG transcytosis. We first investigated the effect of pH on megalin binding to TG in solid phase assays and found that, although megalin bound to TG at various pH values (ranging from 4-8), optimal binding was seen at acidic pH (ranging from 4.5-6). We then studied the effect of chloroquine (CQ) and ammonium chloride (AC), which increase endosomal pH, on transcytosis of TG across Fisher rat thyroid (FRTL-5 cells). Transcytosis assays were performed using FRTL-5 cells cultured on filters in dual chambered devices, with megalin expression only on the upper surface of the layers. TG was added to the upper chamber and transcytosed TG was measured in fluids collected from the lower chamber after incubation at 37 C. Treatment of FRTL-5 cells with CQ or AC did not affect binding and uptake of TG, but it did reduce T3 release from exogenously added TG, used as a measure of TG degradation in the lysosomal pathway. Treatment with CQ or AC resulted in an increase of transcytosis of TG across FRTL-5 cells, but only to a minimal extent (15-20%). The effects of CQ or AC and those of a megalin competitor (the monoclonal antibody 1H2, which reduced transcytosis) were not additive, suggesting that CQ and AC act on the megalin-mediated pathway. In conclusion, because TG binding to megalin is greatest at acidic pH, it is possible that TG does not dissociate from megalin in the lysosomal pathway. However, the pH-dependence of TG binding to megalin does not account for much of transcytosis, which probably occurs largely because of other mechanisms of targeting.
10.1007/bf03345161
Phosphoinositide 3-kinase inhibits megalin-mediated transcytosis of thyroglobulin across thyroid epithelial cells at a post-sorting level.
Marinò M,Chiovato L,Lisi S,Pinchera A,McCluskey R T
European journal of endocrinology
BACKGROUND:Phosphoinositide 3-kinase (PI3-K) is implicated in various cellular processes involving signaling, including intracellular trafficking. PI3-K has been shown to play a part in both receptor- and non-receptor-mediated transcytosis across cultured kidney cells and undifferentiated thyroid cells. OBJECTIVE:To investigate the role of PI3-K in transcytosis of thyroglobulin (Tg) across differentiated cultured Fisher rat thyroid cells (FRTL-5 cells) - a process known to be mediated by megalin, a member of the low-density lipoprotein receptor family. DESIGN:We studied the effect of the microbial product wortmannin, a specific inhibitor of PI3-K, on transcytosis of Tg across FRTL-5 cells. METHODS:Transcytosis experiments were performed using FRTL-5 cells cultured as tight layers on filters in the upper chamber of dual chambered devices, with megalin expression exclusively on the upper cell surface. Tg was added to the upper chamber and cells were incubated at 37 degrees C. Transcytosed Tg was measured in fluids collected from the lower chamber. To study the role of PI3-K, cells were pre-incubated with wortmannin. RESULTS:Pre-incubation of FRTL-5 cells with wortmannin did not affect Tg binding and uptake, but resulted in a considerable increase in Tg transcytosis (by 40-75%, depending on the concentration of wortmannin), suggesting that PI3-K exerts an inhibitory effect on Tg transcytosis. In experiments in which a monoclonal antibody against megalin was used to reduce Tg transcytosis, pre-incubation with wortmannin did not increase Tg transcytosis from its reduced levels, indicating that PI3-K is involved in the megalin-mediated pathway. Wortmannin did not affect the extent of release of tri-iodothyronine from exogenously added Tg by FRTL-5 cells, which was used as a measure of Tg degradation in the lysosomal pathway, indicating that the effect of PI3-K on transcytosis occurs after diversion of Tg from the lysosomal pathway. CONCLUSIONS:PI3-K exerts an inhibitory role on megalin-mediated Tg transcytosis across cultured thyroid cells. PI3-K action takes place at a post-sorting level, after Tg bypassing of the lysosomal pathway.
Binding of the low density lipoprotein receptor-associated protein (RAP) to thyroglobulin (Tg): putative role of RAP in the Tg secretory pathway.
Marinò M,Chiovato L,Lisi S,Pinchera A,McCluskey R T
Molecular endocrinology (Baltimore, Md.)
The 39-44 kDa protein known as the receptor-associated protein binds to members of the low density lipoprotein receptor family and is found within cells that express these receptors. The receptor-associated protein has been shown to prevent premature binding of ligands to the receptors in the endoplasmic reticulum and to promote proper folding and transport of the receptors in the secretory pathway. In the thyroid, megalin (a low-density lipoprotein receptor family member) serves as an endocytic receptor for thyroglobulin. Here we present evidence that the receptor-associated protein can bind to thyroglobulin, which suggests a novel function of the receptor-associated protein, namely binding of certain megalin ligands possibly during the biosynthetic pathway. In solid-phase assays thyroglobulin was shown to bind to the receptor-associated protein with moderately high affinity (mean between K(d) and K(i) = 39.8 nM), in a calcium-dependent and saturable manner. The receptor-associated protein also bound to a native carboxyl-terminal 230-kDa thyroglobulin polypeptide, which markedly reduced binding of intact thyroglobulin to the receptor associated protein, indicating that the receptor-associated protein binding sites of thyroglobulin are located in the carboxyl-terminal portion of the molecule. In addition to thyroglobulin, the receptor-associated protein specifically bound to another megalin ligand, namely lipoprotein lipase. Because lipoprotein lipase markedly reduced receptor-associated protein binding to thyroglobulin, we concluded that the receptor-associated protein uses the same binding site/s to bind to thyroglobulin and lipoprotein lipase. Evidence of thyroglobulin binding to the receptor-associated protein was also obtained in vivo and in cultured thyroid cells. Thus, anti-receptor-associated protein antibodies precipitated intact thyroglobulin from extracts prepared from rat thyroids and cultured thyroid cells (FRTL-5 cells). Chase experiments after inhibition of protein synthesis in FRTL-5 cells showed that thyroglobulin interacts with the receptor-associated protein shortly after the beginning of thyroglobulin biosynthesis.
10.1210/mend.15.10.0710
Megalin (gp330): a putative endocytic receptor for thyroglobulin (Tg).
Zheng G,Marino' M,Zhao J,McCluskey R T
Endocrinology
Megalin (gp330) is a large glycoprotein receptor found mainly on a group of absorptive epithelial cells, including renal proximal tubule, epididymal and thyroid cells. Megalin has been shown to bind multiple, unrelated ligands, mainly in vitro, and to mediate endocytosis of ligandsin cultured cells. However, physiologic ligands of megalin are largely unknown. In the present study we have demonstrated that purified rat megalin binds rat thyroglobulin (Tg) in solid phase assays, with anestimated Kd of 9.2+/-0.6 nM. Binding was calcium dependent and was almost completely inhibited by excess Tg, by three megalin ligands - lactoferrin, lipoprotein lipase and apolipoprotein J- and by the receptor associated protein (RAP), which inhibits binding of all megalin ligands. Three anti-megalin antibodies partially inhibited Tg binding to megalin. 125I labeled Tg bound to megalin was released by EDTA and heparin; the released product was shown by SDS-PAGE and autoradiography to be 660 kD (dimeric) Tg. However, an immunoblotting experiment showed binding of megalin both to monomeric (330 kD) and dimeric Tg. We propose that megalin, which is known to mediate ligand endocytosis and is found on the apical surface of thyrocytes, may participate in the endocytosis of Tg from the colloid, a process that is required for hormone release from Tg.
10.1210/endo.139.3.5978
Megalin-mediated transcytosis of thyroglobulin by thyroid cells is a calmodulin-dependent process.
Marinò M,McCluskey R T
Thyroid : official journal of the American Thyroid Association
Megalin, a multiligand receptor expressed on the apical surface of thyroid cells, mediates transepithelial transport (transcytosis) of thyroglobulin (Tg) across thyrocytes, resulting in diversion of Tg from the lysosomal pathway and reduction of the extent of thyroid hormone release from internalized Tg molecules. The calcium regulatory protein calmodulin facilitates some forms of transcytosis. Here we investigated the role of calmodulin in megalin-mediated transcytosis of Tg by thyroid cells. For this purpose, we studied the effect of calmodulin antagonists on Tg transcytosis by Fisher rat thyroid cells (FRTL-5), an established, differentiated thyroid cell line. FRTL-5 cells were cultured on permeable filters in the upper chamber of dual chambered devices, with megalin expression exclusively on the upper surface. Unlabeled Tg was added to the upper chamber at 37 degrees C, and transcytosed Tg was detected by enzyme-linked immunosorbent assay (ELISA) in fluids collected 1 hour later from the lower chamber. To study the role of calmodulin in Tg transcytosis, cells were preincubated with one of two calmodulin antagonists, either trifluoperazine or W7. Both antagonists markedly reduced transcytosis of Tg by FRTL-5 cells. These inhibitory effects and those of a monoclonal antimegalin antibody were not additive, indicating that calmodulin acts on the megalin-mediated pathway. Furthermore, trifluoperazine increased the extent of triiodothyronine (T3) release from exogenously added Tg by FRTL-5 cells, indicating that Tg transported in the calmodulin-dependent, megalin-mediated pathway, bypasses the lysosomal pathway.
Role of thyroglobulin endocytic pathways in the control of thyroid hormone release.
Marinò M,McCluskey R T
American journal of physiology. Cell physiology
Thyroglobulin (Tg), the thyroid hormone precursor, is synthesized by thyrocytes and secreted into the colloid. Hormone release requires uptake of Tg by thyrocytes and degradation in lysosomes. This process must be precisely regulated. Tg uptake occurs mainly by micropinocytosis, which can result from both fluid-phase pinocytosis and receptor-mediated endocytosis. Because Tg is highly concentrated in the colloid, fluid-phase pinocytosis or low-affinity receptors should provide sufficient Tg uptake for hormone release; high-affinity receptors may serve to target Tg away from lysosomes, through recycling into the colloid or by transcytosis into the bloodstream. Several apical receptors have been suggested to play roles in Tg uptake and intracellular trafficking. A thyroid asialoglycoprotein receptor may internalize and recycle immature forms of Tg back to the colloid, a function also attributed to an as yet unidentified N-acetylglucosamine receptor. Megalin mediates Tg uptake by thyrocytes, especially under intense thyroid-stimulating hormone stimulation, resulting in transcytosis of Tg from the colloid to the bloodstream, a function that prevents excessive hormone release.
10.1152/ajpcell.2000.279.5.C1295
Megalin in thyroid physiology and pathology.
Marinò M,Pinchera A,McCluskey R T,Chiovato L
Thyroid : official journal of the American Thyroid Association
Megalin, a member of the low density lipoprotein endocytic receptor family, is expressed on the apical surface of thyroid epithelial cells, directly facing the follicle lumen, where colloid is stored in high concentrations. Studies in vivo and with cultured thyroid cells have provided evidence that megalin expression on thyroid cells is TSH-dependent. Thyroglobulin (Tg), the major protein component of the colloid and the precursor of thyroid hormones, binds to megalin with high affinity and megalin mediates in part its uptake by thyrocytes. Tg internalized by megalin avoids the lysosomal pathway and is delivered by transepithelial transport (transcytosis) to the basolateral membrane of thyrocytes, from which it is released into the bloodstream. This process competes with pathways leading to thyroid hormone release from Tg molecules, which occurs following internalization of Tg molecules from the colloid by other means of uptake (fluid phase endocytosis or endocytosis mediated by low affinity receptors) that result in proteolytic cleavage in the lyosomes. During transcytosis of Tg, a portion of megalin (secretory component) remains complexed with Tg and enters the circulation, where its detection may serve as a tool to identify the origin of serum Tg in patients with thyroid diseases. Tg endocytosis via megalin is facilitated by the interaction of Tg with cell surface heparan sulfate proteoglycans, which occurs via a carboxyl terminal heparin binding site of Tg functionally related with a major megalin binding site. Although autoantibodies against megalin can be found in the serum of approximately 50% of patients with autoimmune thyroiditis, a role of megalin in this and other thyroid diseases remains to be established.
10.1089/10507250150500667
Fluoride Exposure Induces Inhibition of Sodium/Iodide Symporter (NIS) Contributing to Impaired Iodine Absorption and Iodine Deficiency: Molecular Mechanisms of Inhibition and Implications for Public Health.
International journal of environmental research and public health
The sodium iodide symporter (NIS) is the plasma membrane glycoprotein that mediates active iodide transport in the thyroid and other tissues, such as the salivary, gastric mucosa, rectal mucosa, bronchial mucosa, placenta and mammary glands. In the thyroid, NIS mediates the uptake and accumulation of iodine and its activity is crucial for the development of the central nervous system and disease prevention. Since the discovery of NIS in 1996, research has further shown that NIS functionality and iodine transport is dependent on the activity of the sodium potassium activated adenosine 5'-triphosphatase pump (Na+, K+-ATPase). In this article, I review the molecular mechanisms by which F inhibits NIS expression and functionality which in turn contributes to impaired iodide absorption, diminished iodide-concentrating ability and iodine deficiency disorders. I discuss how NIS expression and activity is inhibited by thyroglobulin (Tg), tumour necrosis factor alpha (TNF-α), transforming growth factor beta 1 (TGF-β1), interleukin 6 (IL-6) and Interleukin 1 beta (IL-1β), interferon-γ (IFN-γ), insulin like growth factor 1 (IGF-1) and phosphoinositide 3-kinase (PI3K) and how fluoride upregulates expression and activity of these biomarkers. I further describe the crucial role of prolactin and megalin in regulation of NIS expression and iodine homeostasis and the effect of fluoride in down regulating prolactin and megalin expression. Among many other issues, I discuss the potential conflict between public health policies such as water fluoridation and its contribution to iodine deficiency, neurodevelopmental and pathological disorders. Further studies are warranted to examine these associations.
10.3390/ijerph16061086
Primary Cilia Mediate TSH-Regulated Thyroglobulin Endocytic Pathways.
Lee Junguee,Sul Hae Joung,Kim Kun-Ho,Chang Joon Young,Shong Minho
Frontiers in endocrinology
Primary cilia are sensory organelles with a variety of receptors and channels on their membranes. Recently, primary cilia were proposed to be crucial sites for exocytosis and endocytosis of vesicles associated with endocytic control of various ciliary signaling pathways. Thyroglobulin (Tg) synthesis and Tg exocytosis/endocytosis are critical for the functions of thyroid follicular cells, where primary cilia are relatively well preserved. LRP2/megalin has been detected on the apical surface of absorptive epithelial cells, including thyrocytes. LRP2/megalin on thyrocytes serves as a Tg receptor and can mediate Tg endocytosis. In this study, we investigated the role of primary cilia in LRP2/megalin expression in thyroid gland stimulated with endogenous TSH using MMI-treated and mice. LRP2/megalin expression in thyroid follicles was higher in MMI-treated mice than in untreated control mice. MMI-treated mice exhibited a significant increase in ciliogenesis in thyroid follicular cells relative to untreated controls. Furthermore, MMI-induced ciliogenesis accompanied increases in LRP2/megalin expression in thyroid follicular cells, in which LRP2/megalin was localized to the primary cilium. By contrast, in mice, thyroid with defective primary cilia expressed markedly lower levels of LRP2/megalin. Serum Tg levels were elevated in MMI-treated mice and reduced in mice. Taken together, these results indicate that defective ciliogenesis in murine thyroid follicular cells is associated with impaired LRP2/megalin expression and reduced serum Tg levels. Our results strongly suggest that primary cilia harbors LRP2/megalin, and are involved in TSH-mediated endocytosis of Tg in murine thyroid follicles.
10.3389/fendo.2021.700083
Cryo-EM structures elucidate the multiligand receptor nature of megalin.
Proceedings of the National Academy of Sciences of the United States of America
Megalin (low-density lipoprotein receptor-related protein 2) is a giant glycoprotein of about 600 kDa, mediating the endocytosis of more than 60 ligands, including those of proteins, peptides, and drug compounds [S. Goto, M. Hosojima, H. Kabasawa, A. Saito, , 106393 (2023)]. It is expressed predominantly in renal proximal tubule epithelial cells, as well as in the brain, lungs, eyes, inner ear, thyroid gland, and placenta. Megalin is also known to mediate the endocytosis of toxic compounds, particularly those that cause renal and hearing disorders [Y. Hori , , 1783-1791 (2017)]. Genetic megalin deficiency causes Donnai-Barrow syndrome/facio-oculo-acoustico-renal syndrome in humans. However, it is not known how megalin interacts with such a wide variety of ligands and plays pathological roles in various organs. In this study, we elucidated the dimeric architecture of megalin, purified from rat kidneys, using cryoelectron microscopy. The maps revealed the densities of endogenous ligands bound to various regions throughout the dimer, elucidating the multiligand receptor nature of megalin. We also determined the structure of megalin in complex with receptor-associated protein, a molecular chaperone for megalin. The results will facilitate further studies on the pathophysiology of megalin-dependent multiligand endocytic pathways in multiple organs and will also be useful for the development of megalin-targeted drugs for renal and hearing disorders, Alzheimer's disease [B. V. Zlokovic , , 4229-4234 (1996)], and other illnesses.
10.1073/pnas.2318859121
Megalin-targeting and ROS-responsive elamipretide-conjugated polymeric prodrug for treatment of acute kidney injury.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
Acute kidney injury (AKI) is associated with both kidney function loss and increased mortality. In the pathological progression of ischemia-reperfusion-induced AKI, the surge of reactive oxygen species (ROS) plays a crucial role. To combat this, mitochondrial-targeted antioxidant therapy shows great promise as mitochondria are the primary source of ROS in AKI. However, most strategies aiming to target mitochondria directly result in nanodrugs that are too large to pass through the glomerular system and reach the renal tubules, which are the main site of damage in AKI. This study focused on synthesizing a Megalin receptor-targeted polymeric prodrug, low molecular weight chitosan-thioketal-elamipretide (LMWC/TK/Ela), to mitigate excessive ROS in renal tubular epithelial cells for AKI. This soluble polymeric prodrug has the ability to successfully reach the tubular site by crossing the glomerular barrier. Once there, it can responsively release elamipretide, which possesses excellent antioxidative properties. Therefore, this research offers a novel approach to actively target renal tubular epithelial cells and intracellular mitochondria for the relief of AKI.
10.1016/j.biopha.2024.116804
Spns1 is an iron transporter essential for megalin-dependent endocytosis.
American journal of physiology. Renal physiology
Proximal tubule endocytosis is essential to produce protein-free urine as well as to regulate system-wide metabolic pathways, such as the activation of Vitamin D. We have determined that the proximal tubule expresses an endolysosomal membrane protein, protein spinster homolog1 (Spns1), which engenders a novel iron conductance that is indispensable during embryonic development. Conditional knockout of Spns1 with a novel Cre-LoxP construct specific to megalin-expressing cells led to the arrest of megalin receptor-mediated endocytosis as well as dextran pinocytosis in proximal tubules. The endocytic defect was accompanied by changes in megalin phosphorylation as well as enlargement of lysosomes, confirming previous findings in Drosophila and Zebrafish. The endocytic defect was also accompanied by iron overload in proximal tubules. Remarkably, iron levels regulated the Spns1 phenotypes because feeding an iron-deficient diet or mating Spns1 knockout with divalent metal transporter1 knockout rescued the phenotypes. Conversely, iron-loading wild-type mice reproduced the endocytic defect. These data demonstrate a reversible, negative feedback for apical endocytosis and raise the possibility that regulation of endocytosis, pinocytosis, megalin activation, and organellar size and function is nutrient-responsive. Spns1 mediates a novel iron conductance essential during embryogenesis. Spns1 knockout leads to endocytic and lysosomal defects, accompanied by iron overload in the kidney. Reversal of iron overload by restricting dietary iron or by concurrent knockout of the iron transporter, DMT1 rescued the endocytic and organellar defects and reverted markers of iron overload. These data suggest feedback between iron and proximal tubule endocytosis.
10.1152/ajprenal.00172.2024
Inhibiting miRNA-146a suppresses mouse gallstone formation by regulating LXR/megalin/cubilin-media cholesterol absorption.
Heliyon
Background:miRNA has been implicated in regulating cholesterol homeostasis, a critical factor in gallstone formation. Here, we focused on elucidating the role of miR-146a in this pathological process. Methods:C57BL/6 mice were fed with lithogenic diet (LD) and injected with miR-146 antagomir (anta-146) via the tail vein for various weeks. The gallbladders and liver tissues were collected for cholesterol crystal imaging, gallstone mass quantification, and molecular analysis. Levels of cholesterol, bile salt, phospholipids, and metabolic parameters in serum and bile were assessed by ELISA. A 3' UTR reporter gene assay was used to verify the direct target genes for miR-146. The relative expression of metabolism genes was analyzed by quantitative real-time PCR and immunoblotting. Results:miR-146a-5p expression was reduced in mice and clinical samples with gallstones. Anta-146 treatment effectively prevented LD-induced gallstone formation in mice without hepatic and cholecystic damage. The mice treated with anta-146 exhibited beneficial alterations in bile cholesterol and bile acids and lipid levels in the blood. A key biliary cholesterol transporter-Megalin was identified as a direct target of miR-146. Anta-146 administration upregulated megalin expression, thereby ameliorating impaired gallbladder cholesterol absorption associated with the LXR-megalin/cubilin pathway. Conclusion:The data demonstrates that miR-146 modulates gallbladder cholesterol absorption by targeting megalin, and prevents the pathogenesis of cholesterol gallstones.
10.1016/j.heliyon.2024.e36679
Microglia-Derived Vitamin D Binding Protein Mediates Synaptic Damage and Induces Depression by Binding to the Neuronal Receptor Megalin.
Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Vitamin D binding protein (VDBP) is a potential biomarker of major depressive disorder (MDD). This study demonstrates for the first time that VDBP is highly expressed in core emotion-related brain regions of mice susceptible to chronic unpredictable mild stress (CUMS). Specifically, the overexpression of microglia (MG)-derived VDBP in the prelimbic leads to depression-like behavior and aggravates CUMS-induced depressive phenotypes in mice, whereas conditional knockout of MG-derived VDBP can reverse both neuronal damage and depression-like behaviors. Mechanistically, the binding of MG-derived VDBP with the neuronal receptor megalin mediates the downstream SRC signaling pathway, leading to neuronal and synaptic damage and depression-like behaviors. These events may be caused by biased activation of inhibitory neurons and excitatory-inhibitory imbalance. Importantly, this study has effectively identified MG-derived VDBP as a pivotal mediator in the interplay between microglia and neurons via its interaction with the neuronal receptor megalin and intricate downstream impacts on neuronal functions, thus offering a promising therapeutic target for MDD.
10.1002/advs.202410273
Vacuolar H-ATPase and Megalin-Mediated Prorenin Uptake: Focus on Elements Beyond the (Pro)Renin Receptor.
Journal of cellular physiology
Megalin is a multiple-ligand receptor that contributes to protein reabsorption in the kidney. Recently, megalin was found to act as a novel endocytic receptor for prorenin. Internalization depended on the (pro)renin receptor. This receptor is an accessory protein of vacuolar H-ATPase (V-ATPase), a complex consisting of 14 subunits and two accessory proteins. Here we explored whether V-ATPase elements other than the (P)RR affect megalin-mediated prorenin uptake. Using RNAi technology, we inhibited each individual V-ATPase subunit in megalin-expressing BN16 cells. Subsequently, we quantified megalin expression and the uptake of prorenin. To unravel the underlying molecular mechanisms, we investigated the adaptor proteins autosomal recessive hypercholesterolemia (ARH) and Disabled-2 (Dab2), which are important for the endocytosis of megalin, glycogen synthase kinase 3β (GSK3β), a regulatory factor of megalin recycling, and endoplasmic reticulum stress factors (ERSF). Silencing subunit Atp6va1 reduced prorenin uptake by 19%, while silencing accessory protein Atp6ap1 increased it by 15%. Silencing other subunits exerted a more modest or no effect. Silencing Atp6va1 reduced surface megalin density, without altering its mRNA and protein levels, and this was associated with increased GSK3β phosphorylation and no change in ARH, Dab2, and ERSF. Silencing Atp6ap1 increased megalin mRNA and protein expression and this was accompanied by upregulation of ARH and ERSF, while Dab2 expression was unaltered. In conclusion, V-ATPase units differently affect megalin-mediated reabsorption of prorenin, thereby offering novel pharmacological targets to not only affect renal renin-angiotensin system activity, but also to treat renal diseases that are associated with disturbed protein reabsorption, like Dent's disease.
10.1002/jcp.31518
Role of megalin (gp330) in transcytosis of thyroglobulin by thyroid cells. A novel function in the control of thyroid hormone release.
Marinò M,Zheng G,Chiovato L,Pinchera A,Brown D,Andrews D,McCluskey R T
The Journal of biological chemistry
When thyroglobulin (Tg) is endocytosed by thyrocytes and transported to lysosomes, thyroid hormones (T4 and T3) are released. However, some internalized Tg is transcytosed intact into the bloodstream, thereby avoiding proteolytic cleavage. Here we show that megalin (gp330), a Tg receptor on thyroid cells, plays a role in Tg transcytosis. Following incubation with exogenous rat Tg at 37 degrees C, Fisher rat thyroid (FRTL-5) cells, a differentiated thyroid cell line, released T3 into the medium. However, when cells were incubated with Tg plus either of two megalin competitors, T3 release was increased, suggesting that Tg internalized by megalin bypassed the lysosomal pathway, possibly with release of undegraded Tg from cells. To assess this possibility, we performed experiments in which FRTL-5 cells were incubated with either unlabeled or (125)I-labeled Tg at 37 degrees C to allow internalization, treated with heparin to remove cell surface-bound Tg, and further incubated at 37 degrees C to allow Tg release. Intact 330-kDa Tg was released into the medium, and the amount released was markedly reduced by megalin competitors. To investigate whether Tg release resulted from transcytosis, we studied FRTL-5 cells cultured as polarized layers with tight junctions on permeable filters in the upper chamber of dual chambered devices. Following the addition of Tg to the upper chamber and incubation at 37 degrees C, intact 330-kDa Tg was found in fluids collected from the lower chamber. The amount recovered was markedly reduced by megalin competitors, indicating that megalin mediates Tg transcytosis. We also studied Tg transcytosis in vivo, using a rat model of goiter induced by aminotriazole, in which increased release of thyrotropin induces massive colloid endocytosis. This was associated with increased megalin expression on thyrocytes and increased serum Tg levels, with reduced serum T3 levels, supporting the conclusion that megalin mediates Tg transcytosis. Tg transcytosis is a novel function of megalin, which usually transports ligands to lysosomes. Megalin-mediated transcytosis may regulate the extent of thyroid hormone release.
10.1074/jbc.275.10.7125