Defective Thyroglobulin: Cell Biology of Disease.
International journal of molecular sciences
The primary functional units of the thyroid gland are follicles of various sizes comprised of a monolayer of epithelial cells (thyrocytes) surrounding an apical extracellular cavity known as the follicle lumen. In the normal thyroid gland, the follicle lumen is filled with secreted protein (referred to as colloid), comprised nearly exclusively of thyroglobulin with a half-life ranging from days to weeks. At the cellular boundary of the follicle lumen, secreted thyroglobulin becomes iodinated, resulting from the coordinated activities of enzymes localized to the thyrocyte apical plasma membrane. Thyroglobulin appearance in evolution is essentially synchronous with the appearance of the follicular architecture of the vertebrate thyroid gland. Thyroglobulin is the most highly expressed thyroid gene and represents the most abundantly expressed thyroid protein. Wildtype thyroglobulin protein is a large and complex glycoprotein that folds in the endoplasmic reticulum, leading to homodimerization and export via the classical secretory pathway to the follicle lumen. However, of the hundreds of human thyroglobulin genetic variants, most exhibit increased susceptibility to misfolding with defective export from the endoplasmic reticulum, triggering hypothyroidism as well as thyroidal endoplasmic reticulum stress. The human disease of hypothyroidism with defective thyroglobulin (either homozygous, or compound heterozygous) can be experimentally modeled in thyrocyte cell culture, or in whole animals, such as mice that are readily amenable to genetic manipulation. From a combination of approaches, it can be demonstrated that in the setting of thyroglobulin misfolding, thyrocytes under chronic continuous ER stress exhibit increased susceptibility to cell death, with interesting cell biological and pathophysiological consequences.
10.3390/ijms232113605
Class III PI3K Vps34 Controls Thyroid Hormone Production by Regulating Thyroglobulin Iodination, Lysosomal Proteolysis, and Tissue Homeostasis.
Grieco Giuseppina,Wang Tongsong,Delcorte Ophélie,Spourquet Catherine,Janssens Virginie,Strickaert Aurélie,Gaide Chevronnay Héloïse P,Liao Xiao-Hui,Bilanges Benoît,Refetoff Samuel,Vanhaesebroeck Bart,Maenhaut Carine,Courtoy Pierre J,Pierreux Christophe E
Thyroid : official journal of the American Thyroid Association
The production of thyroid hormones [triiodothyronine (T3), thyroxine (T4)] depends on the organization of the thyroid in follicles, which are lined by a monolayer of thyrocytes with strict apicobasal polarity. This polarization supports vectorial transport of thyroglobulin (Tg) for storage into, and recapture from, the colloid. It also allows selective addressing of channels, transporters, ion pumps, and enzymes to their appropriate basolateral [Na/I symporter (NIS), SLC26A7, and Na/K-ATPase] or apical membrane domain (anoctamin, SLC26A4, DUOX2, DUOXA2, and thyroperoxidase). How these actors of T3/T4 synthesis reach their final destination remains poorly understood. The PI 3-kinase isoform Vps34/PIK3C3 is now recognized as a main component in the general control of vesicular trafficking and of cell homeostasis through the regulation of endosomal trafficking and autophagy. We recently reported that conditional inactivation in proximal tubular cells in the kidney prevents normal addressing of apical membrane proteins and causes abortive macroautophagy. was inactivated using a Pax8-driven Cre recombinase system. The impact of inactivation in thyrocytes was analyzed by histological, immunolocalization, and messenger RNA expression profiling. Thyroid hormone synthesis was assayed by I injection and plasma analysis. conditional knockout (Vps34) mice were born at the expected Mendelian ratio and showed normal growth until postnatal day 14 (P14), then stopped growing and died at ∼1 month of age. We therefore analyzed thyroid Vps34 at P14. We found that loss of Vps34 in thyrocytes causes (i) disorganization of thyroid parenchyma, with abnormal thyrocyte and follicular shape and reduced PAS colloidal spaces; (ii) severe noncompensated hypothyroidism with extremely low T4 levels (0.75 ± 0.62 μg/dL) and huge thyrotropin plasma levels (19,300 ± 10,500 mU/L); (iii) impaired I organification at comparable uptake and frequent occurrence of follicles with luminal Tg but nondetectable T4-bearing Tg; (iv) intense signal in thyrocytes for the lysosomal membrane marker, LAMP-1, as well as Tg and the autophagy marker, p62, indicating defective lysosomal proteolysis; and (v) presence of macrophages in the colloidal space. We conclude that Vps34 is crucial for thyroid hormonogenesis, at least by controlling epithelial organization, Tg iodination as well as proteolytic T3/T4 excision in lysosomes.
10.1089/thy.2019.0182
Membrane-traversing mechanism of thyroid hormone transport by monocarboxylate transporter 8.
Cellular and molecular life sciences : CMLS
Monocarboxylate transporter 8 (MCT8) mediates thyroid hormone (TH) transport across the plasma membrane in many cell types. In order to better understand its mechanism, we have generated three new MCT8 homology models based on sugar transporters XylE in the intracellular opened (PDB ID: 4aj4) and the extracellular partly occluded (PDB ID: 4gby) conformations as well as FucP (PDB ID: 3o7q) and GLUT3 (PDB ID: 4zwc) in the fully extracellular opened conformation. T-docking studies from both sides revealed interactions with His192, His415, Arg445 and Asp498 as previously identified. Selected mutations revealed further transport-sensitive positions mainly at the discontinuous transmembrane helices TMH7 and 10. Lys418 is potentially involved in neutralising the charge of the TH substrate because it can be replaced by charged, but not by uncharged, amino acids. The side chain of Thr503 was hypothesised to stabilise a helix break at TMH10 that undergoes a prominent local shift during the transport cycle. A T503V mutation accordingly affected transport. The aromatic Tyr419, the polar Ser313 and Ser314 as well as the charged Glu422 and Glu423 lining the transport channel have been studied. Based on related sugar transporters, we suggest an alternating access mechanism for MCT8 involving a series of amino acid positions previously and newly identified as critical for transport.
10.1007/s00018-017-2461-9
The Thyroid Hormone Transporter Mct8 Restricts Cathepsin-Mediated Thyroglobulin Processing in Male Mice through Thyroid Auto-Regulatory Mechanisms That Encompass Autophagy.
Venugopalan Vaishnavi,Al-Hashimi Alaa,Rehders Maren,Golchert Janine,Reinecke Vivien,Homuth Georg,Völker Uwe,Manirajah Mythili,Touzani Adam,Weber Jonas,Bogyo Matthew S,Verrey Francois,Wirth Eva K,Schweizer Ulrich,Heuer Heike,Kirstein Janine,Brix Klaudia
International journal of molecular sciences
The thyroid gland is both a thyroid hormone (TH) generating as well as a TH responsive organ. It is hence crucial that cathepsin-mediated proteolytic cleavage of the precursor thyroglobulin is regulated and integrated with the subsequent export of TH into the blood circulation, which is enabled by TH transporters such as monocarboxylate transporters Mct8 and Mct10. Previously, we showed that cathepsin K-deficient mice exhibit the phenomenon of functional compensation through cathepsin L upregulation, which is independent of the canonical hypothalamus-pituitary-thyroid axis, thus, due to auto-regulation. Since these animals also feature enhanced Mct8 expression, we aimed to understand if TH transporters are part of the thyroid auto-regulatory mechanisms. Therefore, we analyzed phenotypic differences in thyroid function arising from combined cathepsin K and TH transporter deficiencies, i.e., in /, /, and //. Despite the impaired TH export, thyroglobulin degradation was enhanced in the mice lacking Mct8, particularly in the triple-deficient genotype, due to increased cathepsin amounts and enhanced cysteine peptidase activities, leading to ongoing thyroglobulin proteolysis for TH liberation, eventually causing self-thyrotoxic thyroid states. The increased cathepsin amounts were a consequence of autophagy-mediated lysosomal biogenesis that is possibly triggered due to the stress accompanying intrathyroidal TH accumulation, in particular in the // animals. Collectively, our data points to the notion that the absence of cathepsin K and Mct8 leads to excessive thyroglobulin degradation and TH liberation in a non-classical pathway of thyroid auto-regulation.
10.3390/ijms22010462
Thyroid Hormone Transporters.
Groeneweg Stefan,van Geest Ferdy S,Peeters Robin P,Heuer Heike,Visser W Edward
Endocrine reviews
Thyroid hormone transporters at the plasma membrane govern intracellular bioavailability of thyroid hormone. Monocarboxylate transporter (MCT) 8 and MCT10, organic anion transporting polypeptide (OATP) 1C1, and SLC17A4 are currently known as transporters displaying the highest specificity toward thyroid hormones. Structure-function studies using homology modeling and mutational screens have led to better understanding of the molecular basis of thyroid hormone transport. Mutations in MCT8 and in OATP1C1 have been associated with clinical disorders. Different animal models have provided insight into the functional role of thyroid hormone transporters, in particular MCT8. Different treatment strategies for MCT8 deficiency have been explored, of which thyroid hormone analogue therapy is currently applied in patients. Future studies may reveal the identity of as-yet-undiscovered thyroid hormone transporters. Complementary studies employing animal and human models will provide further insight into the role of transporters in health and disease. (Endocrine Reviews 41: 1 - 55, 2020).
10.1210/endrev/bnz008
Interdependence of thyroglobulin processing and thyroid hormone export in the mouse thyroid gland.
Weber Jonas,McInnes Joseph,Kizilirmak Cise,Rehders Maren,Qatato Maria,Wirth Eva K,Schweizer Ulrich,Verrey Francois,Heuer Heike,Brix Klaudia
European journal of cell biology
Thyroid hormone (TH) target cells need to adopt mechanisms to maintain sufficient levels of TH to ensure regular functions. This includes thyroid epithelial cells, which generate TH in addition to being TH-responsive. However, the cellular and molecular pathways underlying thyroid auto-regulation are insufficiently understood. In order to investigate whether thyroglobulin processing and TH export are sensed by thyrocytes, we inactivated thyroglobulin-processing cathepsins and TH-exporting monocarboxylate transporters (Mct) in the mouse. The states of thyroglobulin storage and its protease-mediated processing and degradation were related to the levels of TH transporter molecules by immunoblotting and immunofluorescence microscopy. Thyroid epithelial cells of cathepsin-deficient mice showed increased Mct8 protein levels at the basolateral plasma membrane domains when compared to wild type controls. While the protein amounts of the thyroglobulin-degrading cathepsin D remained largely unaffected by Mct8 or Mct10 single-deficiencies, a significant increase in the amounts of the thyroglobulin-processing cathepsins B and L was detectable in particular in Mct8/Mct10 double deficiency. In addition, it was observed that larger endo-lysosomes containing cathepsins B, D, and L were typical for Mct8- and/or Mct10-deficient mouse thyroid epithelial cells. These data support the notion of a crosstalk between TH transporters and thyroglobulin-processing proteases in thyroid epithelial cells. We conclude that a defect in exporting thyroxine from thyroid follicles feeds back positively on its cathepsin-mediated proteolytic liberation from the precursor thyroglobulin, thereby adding to the development of auto-thyrotoxic states in Mct8 and/or Mct10 deficiencies. The data suggest TH sensing molecules within thyrocytes that contribute to thyroid auto-regulation.
10.1016/j.ejcb.2017.02.002