logo logo
The Need for Early Detection and Treatment in Alzheimer's Disease. EBioMedicine 10.1016/j.ebiom.2016.07.001
Biomarkers for preclinical Alzheimer's disease. Tan Chen-Chen,Yu Jin-Tai,Tan Lan Journal of Alzheimer's disease : JAD Currently, there is a pressing need to shift the focus to accurate detection of the earliest phase of increasingly preclinical Alzheimer's disease (AD). Meanwhile, the growing recognition that the pathophysiological process of AD begins many years prior to clinically obvious symptoms and the concept of a presymptomatic or preclinical stage of AD are becoming more widely accepted. Advances in clinical identification of new measurements will be critical not only in the discovery of sensitive, specific, and reliable biomarkers of preclinical AD but also in the development of tests that will aid in the early detection and differential diagnosis of dementia and in monitoring disease progression. The goal of this review is to provide an overview of biomarkers for preclinical AD, with emphasis on neuroimaging and neurochemical biomarkers. We conclude with a discussion of emergent directions for AD biomarker research. 10.3233/JAD-140843
Pathogenesis of Alzheimer's Disease. International journal of molecular sciences Alzheimer's disease (AD) is the most common type of dementia, accounting for 60% to 80% of all cases [...]. 10.3390/ijms24010107
Alzheimer's disease. Lancet (London, England) In this Seminar, we highlight the main developments in the field of Alzheimer's disease. The most recent data indicate that, by 2050, the prevalence of dementia will double in Europe and triple worldwide, and that estimate is 3 times higher when based on a biological (rather than clinical) definition of Alzheimer's disease. The earliest phase of Alzheimer's disease (cellular phase) happens in parallel with accumulating amyloid β, inducing the spread of tau pathology. The risk of Alzheimer's disease is 60-80% dependent on heritable factors, with more than 40 Alzheimer's disease-associated genetic risk loci already identified, of which the APOE alleles have the strongest association with the disease. Novel biomarkers include PET scans and plasma assays for amyloid β and phosphorylated tau, which show great promise for clinical and research use. Multidomain lifestyle-based prevention trials suggest cognitive benefits in participants with increased risk of dementia. Lifestyle factors do not directly affect Alzheimer's disease pathology, but can still contribute to a positive outcome in individuals with Alzheimer's disease. Promising pharmacological treatments are poised at advanced stages of clinical trials and include anti-amyloid β, anti-tau, and anti-inflammatory strategies. 10.1016/S0140-6736(20)32205-4
Inflammatory Processes in Alzheimer's Disease-Pathomechanism, Diagnosis and Treatment: A Review. International journal of molecular sciences Alzheimer's disease is one of the most commonly diagnosed cases of senile dementia in the world. It is an incurable process, most often leading to death. This disease is multifactorial, and one factor of this is inflammation. Numerous mediators secreted by inflammatory cells can cause neuronal degeneration. Neuritis may coexist with other mechanisms of Alzheimer's disease, contributing to disease progression, and may also directly underlie AD. Although much has been established about the inflammatory processes in the pathogenesis of AD, many aspects remain unexplained. The work is devoted in particular to the pathomechanism of inflammation and its role in diagnosis and treatment. An in-depth and detailed understanding of the pathomechanism of neuroinflammation in Alzheimer's disease may help in the development of diagnostic methods for early diagnosis and may contribute to the development of new therapeutic strategies for the disease. 10.3390/ijms24076518
Biomarkers for Alzheimer's Disease Diagnosis. Current Alzheimer research OBJECTIVE:The dramatic increase in the population with dementia expected in the next decades is accompanied by the establishment of novel and innovated methods that will offer accurate and efficient detection of the disease in its early stages. While Alzheimer's disease is the most common cause of dementia, by the time it is typically diagnosed, substantial neuronal loss and neuropathological lesions can damage many brain regions. The aim of this study is to investigate the main risk factors that affect and increase Alzheimer's disease progression over time even in cases with no significant memory impairment present. Several potential markers are discussed such as oxidative stress, metal ions, vascular disorders, protein dysfunctions and alterations in the mitochondrial populations. CONCLUSION:A multiparametric model of Alzheimer's biomarkers is presented according to the latest classification of the disease. 10.2174/1567205014666170203125942
Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer's Disease. Current neuropharmacology BACKGROUND:The only conclusive way to diagnose Alzheimer's is to carry out brain autopsy of the patient's brain tissue and ascertain whether the subject had Alzheimer's or any other form of dementia. However, due to the non-feasibility of such methods, to diagnose and conclude the conditions, medical practitioners use tests that examine a patient's mental ability. OBJECTIVE:Accurate diagnosis at an early stage is the need of the hour for initiation of therapy. The cause for most Alzheimer's cases still remains unknown except where genetic distinctions have been observed. Thus, a standard drug regimen ensues in every Alzheimer's patient, irrespective of the cause, which may not always be beneficial in halting or reversing the disease progression. To provide a better life to such patients by suppressing existing symptoms, early diagnosis, curative therapy, site-specific delivery of drugs, and application of hyphenated methods like artificial intelligence need to be brought into the main field of Alzheimer's therapeutics. METHODS:In this review, we have compiled existing hypotheses to explain the cause of the disease, and highlighted gene therapy, immunotherapy, peptidomimetics, metal chelators, probiotics and quantum dots as advancements in the existing strategies to manage Alzheimer's. CONCLUSION:Biomarkers, brain-imaging, and theranostics, along with artificial intelligence, are understood to be the future of the management of Alzheimer's. 10.2174/1570159X18666200528142429
New insights into atypical Alzheimer's disease in the era of biomarkers. The Lancet. Neurology Most patients with Alzheimer's disease present with amnestic problems; however, a substantial proportion, over-represented in young-onset cases, have atypical phenotypes including predominant visual, language, executive, behavioural, or motor dysfunction. In the past, these individuals often received a late diagnosis; however, availability of CSF and PET biomarkers of Alzheimer's disease pathologies and incorporation of atypical forms of Alzheimer's disease into new diagnostic criteria increasingly allows them to be more confidently diagnosed early in their illness. This early diagnosis in turn allows patients to be offered tailored information, appropriate care and support, and individualised treatment plans. These advances will provide improved access to clinical trials, which often exclude atypical phenotypes. Research into atypical Alzheimer's disease has revealed previously unrecognised neuropathological heterogeneity across the Alzheimer's disease spectrum. Neuroimaging, genetic, biomarker, and basic science studies are providing key insights into the factors that might drive selective vulnerability of differing brain networks, with potential mechanistic implications for understanding typical late-onset Alzheimer's disease. 10.1016/S1474-4422(20)30440-3
Alzheimer's Disease: Past, Present, and Future. Journal of the International Neuropsychological Society : JINS Although dementia has been described in ancient texts over many centuries (e.g., "Be kind to your father, even if his mind fail him." - Old Testament: Sirach 3:12), our knowledge of its underlying causes is little more than a century old. Alzheimer published his now famous case study only 110 years ago, and our modern understanding of the disease that bears his name, and its neuropsychological consequences, really only began to accelerate in the 1980s. Since then we have witnessed an explosion of basic and translational research into the causes, characterizations, and possible treatments for Alzheimer's disease (AD) and other dementias. We review this lineage of work beginning with Alzheimer's own writings and drawings, then jump to the modern era beginning in the 1970s and early 1980s and provide a sampling of neuropsychological and other contextual work from each ensuing decade. During the 1980s our field began its foundational studies of profiling the neuropsychological deficits associated with AD and its differentiation from other dementias (e.g., cortical vs. subcortical dementias). The 1990s continued these efforts and began to identify the specific cognitive mechanisms affected by various neuropathologic substrates. The 2000s ushered in a focus on the study of prodromal stages of neurodegenerative disease before the full-blown dementia syndrome (i.e., mild cognitive impairment). The current decade has seen the rise of imaging and other biomarkers to characterize preclinical disease before the development of significant cognitive decline. Finally, we suggest future directions and predictions for dementia-related research and potential therapeutic interventions. (JINS, 2017, 23, 818-831). 10.1017/S135561771700100X