logo logo
Antimicrobial activities of Asian ginseng, American ginseng, and notoginseng. Wang Lijun,Huang Yang,Yin Guo,Wang Jue,Wang Ping,Chen Zhen-Yu,Wang Tiejie,Ren Guixing Phytotherapy research : PTR Asian ginseng (Panax ginseng C.A. Meyer), American ginseng (Panax quinquefolius) and notoginseng (Panax notoginseng) are the three most commonly used ginseng botanicals in the world. With the increasing interests on antimicrobial properties of plants, the antimicrobial activities of ginseng species have been investigated by a number of researchers worldwide. This overview interprets our present knowledge of the antimicrobial activities of the three ginseng species and some of their bioactive components against pathogenic bacteria (Pseudomonas aeruginosa, Helicobacter pylori, Staphylococcus aureus, Escherichia coli, Propionibacterium acnes, et al.) and fungi (Candida albicans, Fusarium oxysporum, et al). Ginsenosides, polysaccharides, essential oil, proteins, and panaxytriol are all might responsible for the antimicrobial activities of ginseng. The antimicrobial mechanisms of ginseng components could be summarized to the following points: (a) inhibit the microbial motility and quorum-sensing ability; (b) affect the formation of biofilms and destroy the mature biofilms, which can weaken the infection ability of the microbes; (c) perturb membrane lipid bilayers, thus causing the formation of pores, leakages of cell constituents and eventually cell death; (d) stimulate of the immune system and attenuate microbes induced apoptosis, inflammation, and DNA damages, which can protect or help the host fight against microbial infections; and (e) inhibit the efflux of antibiotics that can descend the drug resistance of the microbial. The collected information might facilitate and guide further studies needed to optimize the use of ginseng and their components to improve microbial food safety and prevent or treat animal and human infections. 10.1002/ptr.6605
Ginsenoside Rg1 attenuates cerebral ischemia-reperfusion injury due to inhibition of NOX2-mediated calcium homeostasis dysregulation in mice. Journal of ginseng research Background:The incidence of ischemic cerebrovascular disease is increasing in recent years and has been one of the leading causes of neurological dysfunction and death. Ginsenoside Rg1 has been found to protect against neuronal damage in many neurodegenerative diseases. However, the effect and mechanism by which Rg1 protects against cerebral ischemia-reperfusion injury (CIRI) are not fully understood. Here, we report the neuroprotective effects of Rg1 treatment on CIRI and its possible mechanisms in mice. Methods:A bilateral common carotid artery ligation was used to establish a chronic CIRI model in mice. HT22 cells were treated with Rg1 after OGD/R to study its effect on [Ca]. The open-field test and pole-climbing experiment were used to detect behavioral injury. The laser speckle blood flowmeter was used to measure brain blood flow. The Nissl and H&E staining were used to examine the neuronal damage. The Western blotting was used to examine MAP2, PSD95, Tau, p-Tau, NOX2, PLC, p-PLC, CN, NFAT1, and NLRP1 expression. Calcium imaging was used to test the level of [Ca]. Results:Rg1 treatment significantly improved cerebral blood flow, locomotion, and limb coordination, reduced ROS production, increased MAP2 and PSD95 expression, and decreased p-Tau, NOX2, p-PLC, CN, NFAT1, and NLRP1 expression. Calcium imaging results showed that Rg1 could inhibit calcium overload and resist the imbalance of calcium homeostasis after OGD/R in HT22 cells. Conclusion:Rg1 plays a neuroprotective role in attenuating CIRI by inhibiting oxidative stress, calcium overload, and neuroinflammation. 10.1016/j.jgr.2021.08.001