logo logo
Recent advances in metal nanoparticles to treat periodontitis. Journal of nanobiotechnology The gradual deterioration of the supporting periodontal tissues caused by periodontitis, a chronic multifactorial inflammatory disease, is thought to be triggered by the colonization of dysbiotic plaque biofilms in a vulnerable host. One of the most prevalent dental conditions in the world, periodontitis is now the leading factor in adult tooth loss. When periodontitis does develop, it is treated by scraping the mineralized deposits and dental biofilm off the tooth surfaces. Numerous studies have shown that non-surgical treatment significantly improves clinical and microbiological indices in individuals with periodontitis. Although periodontal parameters have significantly improved, certain bacterial reservoirs often persist on root surfaces even after standard periodontal therapy. Periodontitis has been treated with local or systemic antibiotics as well as scaling and root planning. Since there aren't many brand-new antibiotics on the market, several researchers are currently concentrating on creating alternate methods of combating periodontal germs. There is a delay in a study on the subject of nanoparticle (NP) toxicity, which is especially concerned with mechanisms of action, while the area of nanomedicine develops. The most promising of them are metal NPs since they have potent antibacterial action. Metal NPs may be employed as efficient growth inhibitors in a variety of bacteria, making them useful for the treatment of periodontitis. In this way, the new metal NPs contributed significantly to the development of efficient anti-inflammatory and antibacterial platforms for the treatment of periodontitis. The current therapeutic effects of several metallic NPs on periodontitis are summarized in this study. This data might be used to develop NP-based therapeutic alternatives for the treatment of periodontal infections. 10.1186/s12951-023-02042-7
Gold nanoparticles modulate the crosstalk between macrophages and periodontal ligament cells for periodontitis treatment. Ni Can,Zhou Jing,Kong Na,Bian Tianying,Zhang Yangheng,Huang Xiaofeng,Xiao Yin,Yang Wenrong,Yan Fuhua Biomaterials The regeneration of lost periodontal apparatus in periodontitis treatment remains a clinical challenge due to the limited regenerative capacity of cementum, periodontal ligament and alveolar bone in periodontitis condition. For periodontal tissue regeneration, it is essential to regulate the inflammatory response and the subsequent differentiation of periodontal cells under the condition due to the infectious nature of the disease. In this study, it was noted that 45 nm gold nanoparticles (AuNPs) could exhibit significant anti-inflammatory effect and improve the periodontal inflammatory microenvironment via regulating inflammatory and regenerative cytokine production and modulating macrophage polarization, subsequently affect the differentiation of human periodontal ligament cells (hPDLCs). With the addition of direct effects of AuNPs on hPDLCs, the periodontal tissue differentiation capacity of hPDLCs in LPS-activated inflammatory macrophage-hPDLCs coculture system was significantly enhanced by the interaction between AuNPs-conditioned macrophage and AuNPs-stimulated hPDLCs. The potential therapeutic application of AuNPs in periodontal tissue regeneration and periodontitis treatment was investigated using both rat fenestration and ligature-induced periodontitis models. It was found that the treatment of 45 AuNPs showed significantly increased newly-formed periodontal attachment, bone and cementum in periodontal defect and less tissue destruction in the progression of periodontitis. This study demonstrated that 45 nm AuNPs could not only directly modulate hPDLCs, but also regulate the early inflammatory response of periodontal tissues via the regulation of macrophage phenotypes, therefore, generate a microenvironment with constraint inflammatory cytokine levels and reparative cytokines such as bone morphogenetic protein-2 (BMP-2), leading to PDLC differentiation, periodontal tissue regeneration and the prevention of periodontitis progression. 10.1016/j.biomaterials.2019.03.039
Gold Nanoparticles Promote the Bone Regeneration of Periodontal Ligament Stem Cell Sheets Through Activation of Autophagy. International journal of nanomedicine OBJECTIVE:Cell sheet technology (CST) is advantageous for repairing alveolar bone defects in clinical situations, and osteogenic induction before implantation may result in enhanced bone regeneration. Herein, we observed the effect of gold nanoparticles (AuNPs) on osteogenic differentiation of periodontal ligament stem cell (PDLSC) sheets and explored their potential mechanism of action. METHODS:PDLSCs were cultured in cell sheet induction medium to obtain cell sheets. PDLSC sheets were treated with or without AuNPs. Alkaline phosphatase, alizarin red S, von Kossa, and immunofluorescence staining were used to observe the effects of AuNPs on the osteogenic differentiation of PDLSC sheets. Western blotting was performed to evaluate the osteogenic effects and autophagy activity. The cell sheets were transplanted into the dorsa of nude mice, and bone regeneration was analyzed by micro-CT and histological staining. RESULTS:AuNPs could promote the osteogenic differentiation of PDLSC sheets by upregulating bone-related protein expression and mineralization. The 45-nm AuNPs were more effective than 13-nm AuNPs. Additional analysis demonstrated that their ability to promote differentiation could depend on activation of the autophagy pathway through upregulation of microtubule-associated protein light chain 3 and downregulation of sequestosome 1/p62. Furthermore, AuNPs significantly promoted the bone regeneration of PDLSC sheets in ectopic models. CONCLUSION:AuNPs enhance the osteogenesis of PDLSC sheets by activating autophagy, and 45-nm AuNPs were more effective than 13-nm AuNPs. This study may provide an AuNP-based pretreatment strategy for improving the application of CST in bone repair and regeneration. 10.2147/IJN.S282246