logo logo
CircCDYL2 bolsters radiotherapy resistance in nasopharyngeal carcinoma by promoting RAD51 translation initiation for enhanced homologous recombination repair. Journal of experimental & clinical cancer research : CR BACKGROUND:Radiation therapy stands to be one of the primary approaches in the clinical treatment of malignant tumors. Nasopharyngeal Carcinoma, a malignancy predominantly treated with radiation therapy, provides an invaluable model for investigating the mechanisms underlying radiation therapy resistance in cancer. While some reports have suggested the involvement of circRNAs in modulating resistance to radiation therapy, the underpinning mechanisms remain unclear. METHODS:RT-qPCR and in situ hybridization were used to detect the expression level of circCDYL2 in nasopharyngeal carcinoma tissue samples. The effect of circCDYL2 on radiotherapy resistance in nasopharyngeal carcinoma was demonstrated by in vitro and in vivo functional experiments. The HR-GFP reporter assay determined that circCDYL2 affected homologous recombination repair. RNA pull down, RIP, western blotting, IF, and polysome profiling assays were used to verify that circCDYL2 promoted the translation of RAD51 by binding to EIF3D protein. RESULTS:We have identified circCDYL2 as highly expressed in nasopharyngeal carcinoma tissues, and it was closely associated with poor prognosis. In vitro and in vivo experiments demonstrate that circCDYL2 plays a pivotal role in promoting radiotherapy resistance in nasopharyngeal carcinoma. Our investigation unveils a specific mechanism by which circCDYL2, acting as a scaffold molecule, recruits eukaryotic translation initiation factor 3 subunit D protein (EIF3D) to the 5'-UTR of RAD51 mRNA, a crucial component of the DNA damage repair pathway to facilitate the initiation of RAD51 translation and enhance homologous recombination repair capability, and ultimately leads to radiotherapy resistance in nasopharyngeal carcinoma. CONCLUSIONS:These findings establish a novel role of the circCDYL2/EIF3D/RAD51 axis in nasopharyngeal carcinoma radiotherapy resistance. Our work not only sheds light on the underlying molecular mechanism but also highlights the potential of circCDYL2 as a therapeutic sensitization target and a promising prognostic molecular marker for nasopharyngeal carcinoma. 10.1186/s13046-024-03049-0
Comprehensive elaboration of the cGAS-STING signaling axis in cancer development and immunotherapy. Zheng Juyan,Mo Junluan,Zhu Tao,Zhuo Wei,Yi Yueneng,Hu Shuo,Yin Jiye,Zhang Wei,Zhou Honghao,Liu Zhaoqian Molecular cancer Cellular recognition of microbial DNA is an evolutionarily conserved mechanism by which the innate immune system detects pathogens. Cyclic GMP-AMP synthase (cGAS) and its downstream effector, stimulator of interferon genes (STING), are involved in mediating fundamental innate antimicrobial immunity by promoting the release of type I interferons (IFNs) and other inflammatory cytokines. Accumulating evidence suggests that the activation of the cGAS-STING axis is critical for antitumor immunity. The downstream cytokines regulated by cGAS-STING, especially type I IFNs, serve as bridges connecting innate immunity with adaptive immunity. Accordingly, a growing number of studies have focused on the synthesis and screening of STING pathway agonists. However, chronic STING activation may lead to a protumor phenotype in certain malignancies. Hence, the cGAS-STING signaling pathway must be orchestrated properly when STING agonists are used alone or in combination. In this review, we discuss the dichotomous roles of the cGAS-STING pathway in tumor development and the latest advances in the use of STING agonists. 10.1186/s12943-020-01250-1
cGAS-STING signaling. Current biology : CB Cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING, also known as TMEM173) constitute the major signaling pathway in vertebrates that senses non-self DNA and elicits potent immune responses. At the core of this pathway, cGAS senses double-stranded DNA (dsDNA) and synthesizes cyclic GMP-AMP (cGAMP). cGAMP serves as a second messenger that relays its signal to downstream innate immune responses through STING. One of the major consequences triggered by the cGAS-STING pathway is the production of antiviral cytokines of the type I interferon family, which in turn induce expression of hundreds of interferon-stimulated genes (ISGs) with diverse antiviral functions. Recent studies have also revealed functional homologs across phylogenetic kingdoms with innate defense functions, suggesting an ancient evolutionary origin of cGAS-STING signaling. Aberrant activation of the cGAS-STING pathway by host DNA can lead to sterile inflammation associated with tissue damage, degeneration as well as premature aging. In this primer, we will introduce the basic principles of cGAS-STING signaling in the vertebrate system and highlight recent discoveries regarding its connection to other fundamental cellular processes in the context of human diseases. 10.1016/j.cub.2022.05.027
cGAS-STING pathway in cancer biotherapy. Wang Yang,Luo Jingwen,Alu Aqu,Han Xuejiao,Wei Yuquan,Wei Xiawei Molecular cancer The activation of the cGAS-STING pathway has tremendous potential to improve anti-tumor immunity by generating type I interferons. In recent decades, we have witnessed that producing dsDNA upon various stimuli is an initiative factor, triggering the cGAS-SING pathway for a defensive host. The understanding of both intracellular cascade reaction and the changes of molecular components gains insight into type I IFNs and adaptive immunity. Based on the immunological study, the STING-cGAS pathway is coupled to cancer biotherapy. The most challenging problem is the limited therapeutic effect. Therefore, people view 5, 6-dimethylxanthenone-4-acetic acid, cyclic dinucleotides and various derivative as cGAS-STING pathway agonists. Even so, these agonists have flaws in decreasing biotherapeutic efficacy. Subsequently, we exploited agonist delivery systems (nanocarriers, microparticles and hydrogels). The article will discuss the activation of the cGAS-STING pathway and underlying mechanisms, with an introduction of cGAS-STING agonists, related clinical trials and agonist delivery systems. 10.1186/s12943-020-01247-w
Cellular functions of cGAS-STING signaling. Trends in cell biology Cyclic GMP-AMP (cGAMP) synthase (cGAS) senses misplaced genomic, mitochondrial, and microbial double-stranded DNA (dsDNA) to synthesize 2'3'-cGAMP that mobilizes stimulator of interferon genes (STING) to unleash innate immune responses, constituting a ubiquitous and effective surveillance system against tissue damage and pathogen invasion. However, imbalanced cGAS-STING signaling tethers considerably in infectious, autoimmune, malignant, fibrotic, and neurodegenerative diseases. Recently, multifaceted roles for cGAS-STING signaling at the cellular scale have emerged; these include autophagy, translation, metabolism homeostasis, cellular condensation, DNA damage repair, senescence, and cell death. These dominances adaptively shape cellular physiologies and impact disease pathogenesis. However, understanding how DNA sensing-initiated responses trigger these diverse cellular processes remains an outstanding challenge. In this review we discuss recent developments of cellular physiological states controlled by cGAS-STING machinery, as well as their disease relevance and underlying mechanisms, canonical or noncanonical. Ultimately, exploiting these cellular functions and mechanisms may represent promising targets for disease therapeutics. 10.1016/j.tcb.2022.11.001
The cGAS-STING pathway and cancer. Nature cancer The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has emerged as a critical innate immune pathway that, following engagement by DNA, promotes distinct immune effector responses that can impact virtually all aspects of tumorigenesis, from malignant cell transformation to metastasis. Here we address how natural tumor-associated processes and traditional cancer therapies are shaped by cGAS-STING signaling, and how this contributes to beneficial or detrimental outcomes of cancer. We consider current efforts to target the cGAS-STING axis in tumors and highlight new frontiers in cGAS-STING biology to inspire thinking about their connection to cancer. 10.1038/s43018-022-00468-w
Bidirectional regulation of the cGAS-STING pathway in the immunosuppressive tumor microenvironment and its association with immunotherapy. Frontiers in immunology Adaptive anti-tumor immunity is currently dependent on the natural immune system of the body. The emergence of tumor immunotherapy has improved prognosis and prolonged the survival cycle of patients. Current mainstream immunotherapies, including immune checkpoint blockade, chimeric antigen receptor T-cell immunotherapy, and monoclonal antibody therapy, are linked to natural immunity. The cGAS-STING pathway is an important natural immunity signaling pathway that plays an important role in fighting against the invasion of foreign pathogens and maintaining the homeostasis of the organism. Increasing evidence suggests that the cGAS-STING pathway plays a key role in tumor immunity, and the combination of STING-related agonists can significantly enhance the efficacy of immunotherapy and reduce the emergence of immunotherapeutic resistance. However, the cGAS-STING pathway is a double-edged sword, and its activation can enhance anti-tumor immunity and immunosuppression. Immunosuppressive cells, including M2 macrophages, MDSC, and regulatory T cells, in the tumor microenvironment play a crucial role in tumor escape, thereby affecting the immunotherapy effect. The cGAS-STING signaling pathway can bi-directionally regulate this group of immunosuppressive cells, and targeting this pathway can affect the function of immunosuppressive cells, providing new ideas for immunotherapy. In this study, we summarize the activation pathway of the cGAS-STING pathway and its immunological function and elaborate on the key role of this pathway in immune escape mediated by the tumor immunosuppressive microenvironment. Finally, we summarize the mainstream immunotherapeutic approaches related to this pathway and explore ways to improve them, thereby providing guidelines for further clinical services. 10.3389/fimmu.2024.1470468
cGAS-STING signaling in the tumor microenvironment. Cancer letters The cGAS-STING signaling is an important pathway involved in the regulation of tumor microenvironment, which affects many cellular functions including immune activation. Its role in combating tumor progression is widely recognized, especially with its function in inducing innate and adaptive immune responses, on which many immunotherapies have been developed. However, a growing number of findings also suggest a diversity of its roles in shaping tumor microenvironment, including functions that promote tumor progression. Here, we summarize the functions of the cGAS-STING signaling in tumor microenvironment to maintain tumor survival and proliferation through facilitating the forming of an immunosuppressive tumor microenvironment and discuss the current advances of STING-related immunotherapies. 10.1016/j.canlet.2023.216409
Tumor Exosomal ENPP1 Hydrolyzes cGAMP to Inhibit cGAS-STING Signaling. Advanced science (Weinheim, Baden-Wurttemberg, Germany) To evade immune surveillance, tumor cells express ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) on the surface of their membrane, which degrades extracellular cyclic GMP-AMP (cGAMP), thereby inhibiting the cyclic GMP-AMP synthase (cGAS) stimulator of interferon gene (STING) DNA-sensing pathway. To fully understand this tumor stealth mechanism, it is essential to determine whether other forms of ENPP1 with hydrolytic cGAMP activity also are present in the tumor microenvironment to regulate this innate immune pathway. Herein, it is reported that various tumor-derived exosomes carry ENPP1, and can hydrolyze synthetic 2'3'-cGAMP and endogenous 2'3'-cGAMP produced by cells to inhibit cGAS-STING pathway in immune cells. Moreover, tumor exosomal ENPP1 also can hydrolyze 2'3'-cGAMP bound to LL-37 (an effective transporter of 2'3'-cGAMP) to inhibit STING signaling. Furthermore, high expression of ENPP1 in exosomes is observed isolated from human breast and lung cancer tissue, and tumor exosomal ENPP1 inhibited the immune infiltration of CD8+ T cells and CD4+ T cells. The results elucidate the essential function of tumor exosomal ENPP1 in the cGAS-STING pathway, furthering understanding of the crosstalk between the tumor cells and immune system. 10.1002/advs.202308131
The pleiotropic roles of cGAS-STING signaling in the tumor microenvironment. Journal of molecular cell biology Cytosolic DNA is prevalent in cells constituting the tumor microenvironment (TME) and can activate the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) innate immune pathway. The initiation, transmission, and execution of the cGAS-STING pathway can take place among different cell types within the TME and thus cGAS-STING may play opposing roles in driving tumor progression in addition to its tumor cell-intrinsic role. Herein, we review recent advances in the cGAS-STING field with a focus on its crosstalk with other signaling pathways in the TME. Future efforts to depict a more detailed picture of the roles of cGAS-STING signaling in the TME will help design a better cancer treatment regime by targeting the cGAS-STING pathway more precisely. 10.1093/jmcb/mjac019
Zebularine potentiates anti-tumor immunity by inducing tumor immunogenicity and improving antigen processing through cGAS-STING pathway. Communications biology DNA methylation is an important epigenetic mechanism involved in the anti-tumor immune response, and DNA methyltransferase inhibitors (DNMTi) have achieved impressive therapeutic outcomes in patients with certain cancer types. However, it is unclear how inhibition of DNA methylation bridges the innate and adaptive immune responses to inhibit tumor growth. Here, we report that DNMTi zebularine reconstructs tumor immunogenicity, in turn promote dendritic cell maturation, antigen-presenting cell activity, tumor cell phagocytosis by APCs, and efficient T cell priming. Further in vivo and in vitro analyses reveal that zebularine stimulates cGAS-STING-NF-κB/IFNβ signaling to enhance tumor cell immunogenicity and upregulate antigen processing and presentation machinery (AgPPM), which promotes effective CD4 and CD8 T cell-mediated killing of tumor cells. These findings support the use of combination regimens that include DNMTi and immunotherapy for cancer treatment. 10.1038/s42003-024-06271-w