logo logo
FHY3 and FAR1 Integrate Light Signals with the miR156-SPL Module-Mediated Aging Pathway to Regulate Arabidopsis Flowering. Xie Yurong,Zhou Qin,Zhao Yongping,Li Quanquan,Liu Yang,Ma Mengdi,Wang Baobao,Shen Rongxin,Zheng Zhigang,Wang Haiyang Molecular plant In response to competition for light from their neighbors, shade-intolerant plants flower precociously to ensure reproductive success and survival. However, the molecular mechanisms underlying this key developmental switch are not well understood. Here, we show that a pair of Arabidopsis transcription factors essential for phytochrome A signaling, FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and FAR-RED IMPAIRED RESPONSE1 (FAR1), regulate flowering time by integrating environmental light signals with the miR156-SPL module-mediated aging pathway. We found that FHY3 and FAR1 directly interact with three flowering-promoting SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors, SPL3, SPL4, and SPL5, and inhibit their binding to the promoters of several key flowering regulatory genes, including FRUITFUL (FUL), LEAFY (LFY), APETALA1 (AP1), and MIR172C, thus downregulating their transcript levels and delaying flowering. Under simulated shade conditions, levels of SPL3/4/5 proteins increase, whereas levels of FHY3 and FAR1 proteins decline, thus releasing SPL3/4/5 from FHY3/FAR1 inhibition to allow activation of FUL, LFY, AP1, and MIR172C and, consequently, early flowering. Taken together, these results unravel a novel mechanism whereby plants regulate flowering time by integrating environmental cues (such as light conditions) and an internal developmental program (the miR156-SPL module-mediated aging pathway). 10.1016/j.molp.2020.01.013
Control of Plant Height and Lateral Root Development via Stu-miR156 Regulation of SPL9 Transcription Factor in Potato. Plants (Basel, Switzerland) MicroRNAs (miRNAs) are a class of endogenous, non-coding small-molecule RNAs that usually regulate the expression of target genes at the post-transcriptional level. miR156 is one of a class of evolutionarily highly conserved miRNA families. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor is one of the target genes that is regulated by miR156. SPL transcription factors are involved in regulating plant growth and development, hormone response, stress response, and photosynthesis. In the present study, transgenic potato plants with overexpressed miR156 were obtained via the -mediated transformation method. The results showed that the expression levels of the target gene, , were all downregulated in the transgenic plants with overexpressed Stu-miR156. Compared with those of the control plants, the plant height and root length of the transgenic plants were significantly decreased, while the number of lateral roots was significantly increased. These results revealed that the miR156/SPLs module was involved in regulating potato plant height and root growth. 10.3390/plants13050723
Molecular and functional characterization of the SBP-box transcription factor SPL-CNR in tomato fruit ripening and cell death. Lai Tongfei,Wang Xiaohong,Ye Bishun,Jin Mingfei,Chen Weiwei,Wang Ying,Zhou Yingying,Blanks Andrew M,Gu Mei,Zhang Pengcheng,Zhang Xinlian,Li Chunyang,Wang Huizhong,Liu Yule,Gallusci Philippe,Tör Mahmut,Hong Yiguo Journal of experimental botany SlSPL-CNR, an SBP-box transcription factor (TF) gene residing at the epimutant Colourless non-ripening (Cnr) locus, is involved in tomato ripening. This epimutant provides a unique model to investigate the (epi)genetic basis of fruit ripening. Here we report that SlSPL-CNR is a nucleus-localized protein with a distinct monopartite nuclear localization signal (NLS). It consists of four consecutive residues ' 30KRKR33' at the N-terminus of the protein. Mutation of the NLS abolishes SlSPL-CNR's ability to localize in the nucleus. SlSPL-CNR comprises two zinc-finger motifs (ZFMs) within the C-terminal SBP-box domain. Both ZFMs contribute to zinc-binding activity. SlSPL-CNR can induce cell death in tomato and tobacco, dependent on its nuclear localization. However, the two ZFMs have differential impacts on SlSPL-CNR's induction of severe necrosis or mild necrotic ringspot. NLS and ZFM mutants cannot complement Cnr fruits to ripen. SlSPL-CNR interacts with SlSnRK1. Virus-induced SlSnRK1 silencing leads to reduction in expression of ripening-related genes and inhibits ripening in tomato. We conclude that SlSPL-CNR is a multifunctional protein that consists of a distinct monopartite NLS, binds to zinc, and interacts with SlSnRK1 to affect cell death and tomato fruit ripening. 10.1093/jxb/eraa067
Roles of transcription factor SQUAMOSA promoter binding protein-like gene family in papaya (Carica papaya) development and ripening. Xu Yongjie,Xu Haixia,Wall Marisa M,Yang Jinzeng Genomics SQUAMOSA promoter binding protein-like (SPL) family plays vital regulatory roles in plant growth and development. The SPL family in climacteric fruit Carica papaya has not been reported. This study identified 14 papaya SPLs (CpSPL) from papaya genome and analyzed their sequence features, phylogeny, intron/exon structure, conserved motif, miR156-mediated posttranscriptional regulation, and expression patterns. 14 CpSPLs were clustered into 8 groups, and two distinct expression patterns were revealed for miR156-targeted and nontargeted CpSPLs in different tissues and fruit development stages. The expression changes of CpSPLs in ethephon and 1-MCP treated fruit during ripening suggested that the CpSPLs guided by CpmiR156 play crucial roles in ethylene signaling pathway. This study sheds light on the new function of SPL family in fruit development and ripening, providing insights on understanding evolutionary divergence of the members of SPL family among plant species. 10.1016/j.ygeno.2020.03.009
The transcription factor SPL13 mediates strigolactone suppression of shoot branching by inhibiting cytokinin synthesis in Solanum lycopersicum. Journal of experimental botany Plant architecture imposes a large impact on crop yield. IDEAL PLANT ARCHITECTURE 1 (IPA1), which encodes a SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor, is a target of molecular design for improving grain yield. However, the roles of SPL transcription factors in regulating tomato (Solanum lycopersicum) plant architecture are unclear. Here, we show that the expression of SPL13 is down-regulated in the lateral buds of strigolactone (SL)-deficient ccd mutants and is induced by GR24 (a synthetic analog of SL). Knockout of SPL13 by CRISPR/Cas9 resulted in higher levels of cytokinins (CKs) and transcripts of the CK synthesis gene ISOPENTENYL TRANSFERASES 1 (IPT1) in the stem nodes, and more growth of lateral buds. GR24 suppresses CK synthesis and lateral bud growth in ccd mutants, but is not effective in spl13 mutants. On the other hand, silencing of the IPT1 gene inhibited bud growth of spl13 mutants. Interestingly, SL levels in root extracts and exudates are significantly increased in spl13 mutants. Molecular studies indicated that SPL13 directly represses the transcription of IPT1 and the SL synthesis genes CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7) and MORE AXILLARY GROWTH 1 (MAX1). The results demonstrate that SPL13 acts downstream of SL to suppress lateral bud growth by inhibiting CK synthesis in tomato. Tuning the expression of SPL13 is a potential approach for decreasing the number of lateral shoots in tomato. 10.1093/jxb/erad303
Characterization of Vv-miR156: Vv-SPL pairs involved in the modulation of grape berry development and ripening. Cui Mengjie,Wang Chen,Zhang Wenying,Pervaiz Tariq,Haider Muhammad Salman,Tang Wei,Fang Jinggui Molecular genetics and genomics : MGG SPL is a plant-specific transcription factor family. Many researchers reported that SPL members targeted by miR156s could play crucial roles in the modulation of plant growth and development. Although there are similar reports on grapes, till now little is known about grape berry development and ripening. To gain more insight into how grape miR156s (Vv-miR156s) modulated the above given processes of grape berries by mediating their target gene Vv-SPLs, here we identified the precise sequences of Vv-miR156s in 'Giant Rose' grape berries, predicted their potential targets, and revealed that the matching degree of various Vv-miR156: Vv-SPL pairs exhibited some discrepancy, implying the divergence of their interaction. Subsequently, we also discovered similar motifs such as ABRE, CGTCA and ERE, which are more specific to berry development and ripening, within the promoters of both Vv-MIR156s and Vv-SPLs. With berry development and ripening, meanwhile, Vv-miR156a, b/c/d, e and f/g/i exhibited an overall increasing expression trend, while their targets showed opposite trends at the corresponding stages. Additionally, exogenous ABA and NAA application promoted or curbed the expression of Vv-miR156s to some extent, before grape berry ripening stage. The cleavage products, sites and frequencies of Vv-miR156a, b/c/d, e, f/g/i and their respective targets (Vv-SPL2, 9, 10, 16) during grape berry development and ripening process were validated by our developed PPM-RACE and modified RLM-RACE together with qRT-PCR, which demonstrated that Vv-miR156s can be involved in the modulation of grape berry development and ripening process by mediating the expression of Vv-SPL2, 9, 10, 16. Our findings lay an important foundation for further recognizing their functions in grape berries, and enrich the knowledge of the regulatory mechanism of miRNA-mediated grape berry development and ripening. 10.1007/s00438-018-1462-1
The SBP-box transcription factor PlSPL2 negatively regulates stem development in herbaceous peony. Plant cell reports KEY MESSAGE:The SBP-box transcription factor PlSPL2 silencing in herbaceous peony enhanced stem strength by regulating xylem development, whereas its overexpression in tobacco resulted in weaker stem strength and undeveloped xylem. The strength of plant stems is a critical determinant of lodging resistance of plants, which significantly affects crop yield and cut-flower quality. Squamosa promoter binding (SBP) protein-like (SPL) transcription factors (TFs), participate in multiple regulatory processes, particularly in stem development. In this study, PlSPL2, an orthologous gene of Arabidopsis AtSPL2 in herbaceous peony, was isolated and found to contain a conserved SBP domain featuring two typical Zn-binding sites, as well as a nuclear localization sequence (NLS). Subsequently, transient infection of tobacco leaf epidermal cells using Agrobacterium confirmed the nuclear localization of PISPL2 protein. Additionally, gene expression analyses revealed that PlSPL2 was preferentially expressed in stems, and demonstrated a download trend in expression levels within vascular bundles during stem cell wall development. Furthermore, silencing of PlSPL2 in herbaceous peony enhanced stem strength. The silenced plants exhibited more developed xylems with wider radii and higher numbers of cell layers. Overexpression of PlSPL2 in tobacco, however, resulted in weaker stem strength, accompanied by a narrower radius of the xylem. These findings suggested that PlSPL2 was a negative regulator of herbaceous peony stem development, and its discovery and research could significantly contribute to a deeper understanding of stem growth and development mechanisms. 10.1007/s00299-024-03355-z
miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Wang Jia-Wei,Czech Benjamin,Weigel Detlef Cell The FT gene integrates several external and endogenous cues controlling flowering, including information on day length. A complex of the mobile FT protein and the bZIP transcription factor FD in turn has a central role in activating genes that execute the switch from vegetative to reproductive development. Here we reveal that microRNA156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes not only act downstream of FT/FD, but also define a separate endogenous flowering pathway. High levels of miR156 in young plants prevent precocious flowering. A subsequent day length-independent decline in miR156 abundance provides a permissive environment for flowering and is paralleled by a rise in SPL levels. At the shoot apex, FT/FD and SPLs converge on an overlapping set of targets, with SPLs directly activating flower-promoting MADS box genes, providing a molecular substrate for both the redundant activities and the feed-forward action of the miR156/SPL and FT/FD modules in flowering control. 10.1016/j.cell.2009.06.014
ZmSPL13 and ZmSPL29 act together to promote vegetative and reproductive transition in maize. The New phytologist Flowering time is a key agronomic trait determining environmental adaptation and yield potential of crops. The regulatory mechanisms of flowering in maize still remain rudimentary. In this study, we combine expressional, genetic, and molecular studies to identify two homologous SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors ZmSPL13 and ZmSPL29 as positive regulators of juvenile-to-adult vegetative transition and floral transition in maize. We show that both ZmSPL13 and ZmSPL29 are preferentially expressed in leaf phloem, vegetative and reproductive meristem. We show that vegetative phase change and flowering time are moderately delayed in the Zmspl13 and Zmspl29 single knockout mutants and more significantly delayed in the Zmspl13/29 double mutants. Consistently, the ZmSPL29 overexpression plants display precocious vegetative phase transition and floral transition, thus early flowering. We demonstrate that ZmSPL13 and ZmSPL29 directly upregulate the expression of ZmMIR172C and ZCN8 in the leaf, and of ZMM3 and ZMM4 in the shoot apical meristem, to induce juvenile-to-adult vegetative transition and floral transition. These findings establish a consecutive signaling cascade of the maize aging pathway by linking the miR156-SPL and the miR172-Gl15 regulatory modules and provide new targets for genetic improvement of flowering time in maize cultivars. 10.1111/nph.19005