logo logo
Application of Bacillus Coagulans as Paraprobiotic Against Acute Hepatopancreatic Necrosis Disease in Shrimp. Probiotics and antimicrobial proteins Paraprobiotics, known as non-viable or ghost probiotics, have attracted attention for their benefits over live microbial cells. This study was designed to investigate the paraprobiotic effects of heat-killed Bacillus coagulans on the white leg shrimp Litopenaeus vannamei. The paraprobiotic formulation was prepared in three different concentrations including B. coagulans 1 (10 cells g diet), B. coagulans 2 (10 cells g diet), and B. coagulans 3 (10 cells g diet) through heat inactivation method. Preliminary toxicity assessments revealed that post-larvae shrimps (mean weight ± SE: 0.025 ± 0.007 g) treated with B. coagulans 1, 2 and 3 paraprobiotic formulations exhibited no mortality, confirming the non-toxic nature of the formulated diet. In a 90-day feeding trial involving juvenile shrimps (mean weight ± SE: 0.64 ± 0.05 g), growth parameters and feed conversion ratios improved in all experimental groups. Subsequently, these shrimps were challenged with Vibrio parahaemolyticus, revealing that paraprobiotic-fed shrimps exhibited significant survival rate improvements. Oxidative stress-related enzyme activities, such as superoxide dismutase and catalase, increased in paraprobiotic-fed shrimps post-Vibrio challenge, while the challenged control group showed decreased activity (p < 0.001). Nitric oxide levels are also increased in paraprobiotic-treated shrimp, with B. coagulans 3 showing a significant rise in nitric oxide activity (p < 0.001). This study further demonstrated the positive impact of paraprobiotic treatment on digestive enzymes, immune-related parameters (e.g., total hemocyte count, prophenoloxidase, and respiratory burst activity), and overall disease resistance. These findings suggest that B. coagulans paraprobiotics have the potential to enhance antioxidant, antibacterial, and immune-related responses in L. vannamei, making them a valuable addition to shrimp aquaculture. 10.1007/s12602-024-10230-6
Dietary supplementation of Bacillus velezensis improves Vibrio anguillarum clearance in European sea bass by activating essential innate immune mechanisms. Fish & shellfish immunology Bacillus spp. supplementation as probiotics in cultured fish diets has a long history of safe and effective use. Specifically, B. velezensis show great promise in fine-tuning the European sea bass disease resistance against the pathogenicity caused by several members of the Vibrio family. However, the immunomodulatory mechanisms behind this response remain poorly understood. Here, to examine the inherent immune variations in sea bass, two equal groups were fed for 30 days with a steady diet, with one treatment supplemented with B. velezensis. The serum bactericidal capacity against live cells of Vibrio anguillarum strain 507 and the nitric oxide and lysozyme lytic activities were assayed. At the cellular level, the phagocytic response of peripheral blood leukocytes against inactivated Candida albicans was determined. Moreover, head-kidney (HK) total leukocytes were isolated from previously in vivo treated fish with LPS of V. anguillarum strain 507. Mechanistically, the expression of some essential proinflammatory genes (interleukin-1 (il1b), tumor necrosis factor-alpha (tnfa), and cyclooxygenase 2 (cox2) and the sea bass specific antimicrobial peptide (AMP) dicentracin (dic) expressions were assessed. Surprisingly, the probiotic supplementation significantly increased all humoral lytic and cellular activities assayed in the treated sea bass. In addition, time-dependent differences were observed between the control and probiotic treated groups for all the HK genes markers subjected to the sublethal LPS dose. Although the il1b was the fastest responding gene to a significant level at 48 h post-injection (hpi), all the other genes followed 72 h in the probiotic supplemented group. Finally, an in vivo bacteria challenge against live V. anguillarum was conducted. The probiotic fed fish observed a significantly higher survival. Overall, our results provide clear vertical evidence on the beneficial immune effects of B. velezensis and unveil some fundamental immune mechanisms behind its application as a probiotic agent in intensively cultured European sea bass. 10.1016/j.fsi.2022.03.032
Preventive and reparative potentials of heat-inactivated and viable commensal Bacillus pumilus SE5 in ameliorating the adverse impacts of high soybean meal in grouper (Epinephelus coioides). Fish & shellfish immunology Probiotic Bacillus pumilus SE5, heat-inactivated (HSE5) or active (ASE5), were supplemented to high soybean meal (HSM) (36 %) diet at whole term (0-56 days) and middle term (29-56 days) to investigate the preventing and repairing effects of B. pumilus SE5 in ameliorating the adverse effects of HSM in Epinephelus coioides. The results suggested that the HSM significantly decreased the weight gain rate (WGR), specific growth rate (SGR), and increased the feed conversion rate (FCR) at day 56 (P < 0.05), while HSE5 and ASE5 promoted the growth performance. The HSE5 and ASE5 showed preventive and reparative functions on the antioxidant capacity and serum immunity, with significantly increased the total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GSH-PX) activities, and reduced malondialdehyde (MDA) level, and increased acid phosphatase (ACP), alkaline phosphatase (AKP), immunoglobulin M (IgM) and complement 3 (C3). The HSM impaired the intestinal health (destroyed the intestinal structure, significantly increased the contents of serum D-lactic acid and diamine oxidase, and reduced the expressions of claudin-3 and occludin), while HSE5 and ASE5 improved them at whole term and middle term. The HSM impaired the intestinal microbiota and reduced its diversity, and the HSE5 or ASE5 improved the intestinal microbiota (especially at whole term). HSE5 and ASE5 improved the intestinal mRNA expressions of anti-inflammatory genes (il-10 and tgf-β1) and reduced the expressions of pro-inflammatory genes (il-1β, il-8, il-12), and promoted the expressions of humoral immune factor-related genes (cd4, igm, mhcII-α) and antimicrobial peptide genes (β-defensin, epinecidin-1 and hepcidin-1), and decreased the expressions of NF-κB/MAPK signaling pathway-related genes (ikk-α, nf-κb, erk-1), and improved the expressions of MAPK signaling pathway-related gene p38-α (P < 0.05). In conclusion, the heat-inactivated and active B. pumilus SE5 effectively prevented and repaired the suppressive effects of soybean meal in E. coioides, which underscored the potential of B. pumilus SE5 as a nutritional intervention agent in HSM diet in aquaculture. 10.1016/j.fsi.2024.109846
Interaction effects of dietary supplementation of heat-killed Lactobacillus plantarum and β-glucan on growth performance, digestibility and immune response of juvenile red sea bream, Pagrus major. Dawood Mahmoud A O,Koshio Shunsuke,Ishikawa Manabu,Yokoyama Saichiro Fish & shellfish immunology Both heat-killed Lactobacillus plantarum (HK-LP) and β-glucan (BG) play important roles in growth performance, feed utilization and health status of fish. Therefore, a feeding trial was conducted to determine the interactive effects of dietary HK-LP and BG on growth performance, digestibility, oxidative status and immune response of red sea bream for 56 days. A significant interaction was found between HK-LP and BG on final body weight, total plasma protein, glucose, serum bactericidal activity (BA), total serum protein, serum alternative complement pathway (ACP) activity, protein and dry matter digestibility coefficients (P < 0.05). In addition, body weight gain, specific growth rate, feed intake, protein efficiency ratio as well as serum lysozyme activity, ACP activity and mucus secretion were significantly affected by either HK-LP or BG (P < 0.05). Further, feeding 0.025% HK-LP combined with 0.1% BG significantly increased serum peroxidase activity compared with the other groups (P < 0.05). However, protein body content, somatic parameters, total bilirubin, blood urea nitrogen, glutamyl oxaloacetic transaminase (GOT), glutamic-pyruvate transaminase (GPT), triglycerides and mucus BA were not significantly altered by supplementations (P > 0.05). Interestingly, fish fed with both HK-LP at (0.025 and 0.1%) in combination with BG at (0 and 0.1%) showed higher oxidative stress resistance. Under the experimental conditions, dietary HK-LP and BG had a significant interaction on enhancing the growth, digestibility and immune responses of red sea bream. 10.1016/j.fsi.2015.01.033
Effects of dietary supplementation with heat-killed Lactobacillus acidophilus on growth performance, digestive enzyme activity, antioxidant capacity, and inflammatory response of juvenile large yellow croaker (Larimichthys crocea). Fish & shellfish immunology A ten-week culture trial in juvenile large yellow croaker (Larimichthys crocea) (10.80 ± 0.10 g) was conducted to assess the impact of supplementing heat-killed Lactobacillus acidophilus (HLA) on growth performance, intestinal digestive enzyme activity, antioxidant capacity and inflammatory response. Five iso-nitrogenous (42 % crude protein) and iso-lipidic (12 % crude lipid) experimental feeds with different levels of HLA (0.0 %, 0.1 %, 0.2 %, 0.4 %, or 0.8 %) were prepared. They were named FO (control group), HLA0.1, HLA0.2, HLA0.4 and HLA0.8, respectively. The results indicated that HLA addition had no impact on survival (P > 0.05). In this experiment, the final body weight, weight gain rate and specific growth rate showed a quadratic regression trend, initially increasing and subsequently decreasing with the increasing in HLA levels, and attained the peak value at 0.2 % HLA supplemental level (P < 0.05). In contrast to the control group, in terms of digestive ability, amylase, lipase and trypsin exhibited a notable linear and quadratic pattern, demonstrating a substantial increase when 0.1% 0.2 % HLA was added in the diets (P < 0.05). Notably, elevated levels of catalase (CAT) activity, superoxide dismutase (SOD) activity, and total antioxidant capacity (T-AOC) were observed in the liver when adding 0.1%-0.2 % HLA, and the level of malondialdehyde (MDA) was significantly decreased and the liver exhibited a notable upregulation in the mRNA expression levels of nrf2, cat, sod2, and sod3 (P < 0.05). Additionally, the mRNA levels of genes associated with tight junctions in the intestines (zo-1, zo-2 and occludin) exhibited a significant upregulation when 0.2 % HLA was added in the feed (P < 0.05). Furthermore, the levels of mRNA expression for proinflammatory genes in the intestines including tnf-α, il-1β, il-6 and il-8 exhibited a quadratic regression trend, characterized by an initial decline followed by subsequent growth (P < 0.05). Meanwhile, the levels of mRNA expression for genes linked to anti-inflammatory responses in the intestines (including il-10, tgf-β, and arg1) exhibited a quadratic regression pattern, initially increasing and subsequently decreasing (P < 0.05). Compare with the control group, the levels of tnf-α, il-1β and il-8 expression were notably downregulated in all HLA addition groups (P < 0.05). When 0.2 % HLA was added, the expression levels of il-10, tgf-β and arg1 in the intestinal tract were markedly increased (P < 0.05). Overall, the supplementation of 0.2 % HLA in the feed has been shown to enhance the growth performance. The enhancement was attributed to HLA's capacity to improve antioxidant function, intestinal barrier integrity, and mitigate inflammatory responses. This research offers a scientific foundation for the utilization of HLA in aquaculture. 10.1016/j.fsi.2024.109651
Evaluation of in vitro and in vivo potential of Bacillus subtilis MBTDCMFRI Ba37 as a candidate probiont in fish health management. Nair Anusree V,Leo Antony M,Praveen N K,Sayooj P,Raja Swaminathan T,Vijayan K K Microbial pathogenesis Bacillus subtilis MBTDCMFRI Ba37 (B. subtilis Ba37), an antibacterial strain isolated from the tropical estuarine habitats of Cochin, was evaluated for in vitro and in vivo potential, and its application as a candidate probiont in fish health management. B. subtilis Ba37 was characterized using their morphological and biochemical properties. It exhibited exoenzymatic activities, tolerance to various physiological conditions and a wide spectrum of antibacterial activity against aquaculture pathogens such as Vibrio and Aeromonas. In co-culture assay, B. subtilis Ba37 inhibited Vibrio anguillarum O1 (V. anguillarum O1) even with the initial cell count of 10 CFUmL. Cytotoxicity assay performed using the cell free supernatant (CFS) of B. subtilis Ba37 revealed its non toxic nature. A twenty one days of feeding trial was conducted in juveniles of Etroplus suratensis (E.suratensis) by administrating B. subtilis Ba37 to evaluate its efficacy on growth, immune parameters and antioxidant enzyme activities. Overall the supplementation of B. subtilis Ba37 enhanced significantly (P < 0.05) the survival rate, weight gain, specific growth (SGR), feed conversion ratio (FCR), protein efficiency ratio (PER), and feed efficiency (FE) of the fed animals as compared with the control. The immune parameters and antioxidant activities such as total protein, alkaline phosphatase (ALP), superoxide dismutase (SOD) and catalase were also improved significantly (P < 0.05) while serum alanine aminotransferase (SGOT) and serum aspartate aminotransferase (SGPT) activities were decreased slightly than the control. After fifteen days of challenge test, the fish fed with B. subtilis Ba37 showed higher relative percentage survival (RPS) than the control. Thus the study indicated the advantages of B. subtilis Ba37 to be used as a candidate probiont, which could be effectively utilized in managing diseases in aquaculture systems and to improve the health of the host. 10.1016/j.micpath.2020.104610
Dietary Supplementation of Bacillus sp. SJ-10 and Lactobacillus plantarum KCCM 11322 Combinations Enhance Growth and Cellular and Humoral Immunity in Olive Flounder (Paralichthys olivaceus). Hasan Md Tawheed,Jang Won Je,Lee Bong-Joo,Hur Sang Woo,Lim Sang Gu,Kim Kang Woong,Han Hyon-Sob,Lee Eun-Woo,Bai Sungchul C,Kong In-Soo Probiotics and antimicrobial proteins Experiments were conducted to identify different ratios of Bacillus sp. SJ-10 and Lactobacillus plantarum KCCM 11322 mixtures at a concentration of 1 × 10 CFU/g diet; the effects on growth and cellular and humoral immune responses and the characteristics of disease protection in olive flounder (Paralichthys olivaceus). Flounder were divided into six groups and fed control diet D-1 (without Bacillus sp. SJ-10 and L. plantarum KCCM 11322), positive control diets D-2 (Bacillus sp. SJ-10 at 1 × 10 CFU/g feed) and D-3 (L. plantarum KCCM 11322 at 1 × 10 CFU/g feed); or treatment diets D-4 (3:1 Bacillus sp. SJ-10 and L. plantarum KCCM 11322 at 0.75 + 0.25 × 10 CFU/g feed), D-5 (1:1 Bacillus sp. SJ-10 and L. plantarum KCCM 11322 at 0.50 + 0.50 × 10 CFU/g feed), or D-6 (1:3 Bacillus sp. SJ-10 and L. plantarum KCCM 11322 at 0.25 + 0.75 × 10 CFU/g feed) for 8 weeks. Group D-4 demonstrated better growth and feed utilization (P < 0.05) compared with the controls and positive controls. Similar modulation was also observed in respiratory burst for all treatments and in the expression levels of TNF-α, IL-1β, IL-6, and IL-10 in different organs in D-4. D-4 and D-5 increased respiratory burst, superoxide dismutase, lysozyme, and myeloperoxidase activities compared with the controls, and only D-4 increased microvilli length. When challenged with 1 × 10 CFU/mL Streptococcus iniae, the fish in the D-4 and D-5 groups survived up to 14 days, whereas the fish in the other groups reached 100% mortality at 11.50 days. Collectively, a ratio-specific Bacillus sp. SJ-10 and L. plantarum KCCM 11322 mixture (3:1) was associated with elevated growth, innate immunity, and streptococcosis resistance (3:1 and 1:1) compared with the control and single probiotic diets. 10.1007/s12602-021-09749-9
Probiotics Mediate Intestinal Microbiome and Microbiota-Derived Metabolites Regulating the Growth and Immunity of Rainbow Trout (Oncorhynchus mykiss). Microbiology spectrum Emerging evidence confirms using probiotics in promoting growth and immunity of farmed fish. However, the molecular mechanisms underlying the host-microbiome interactions mediated by probiotics are not fully understood. In this study, we used rainbow trout (Oncorhynchus mykiss) as a model to investigate the internal mechanisms of host-microbiome interactions influenced by two probiotic bacteria, Bacillus velezensis and Lactobacillus sakei. We carried out experiments, including intestinal histology, serum physiology, and transcriptome and combined intestinal microbiome and metabolite profiling. Our results showed that both probiotics had a positive effect on growth, immunity, serum enzyme activity, the gut microbiome, and resistance to Aeromonas salmonicida in rainbow trout. Moreover, the intestinal microbial structure was reshaped with increased relative abundance of potential beneficial bacteria, such as , , , Bacillus coagulans, , , and in the group and and Eubacterium hallii in the group. Metabolomic profiling and transcriptome analysis revealed upregulated metabolites as biomarkers, i.e., sucrose and l-malic acid in the group, and -acetyl-l-phenylalanine, -acetylneuraminic acid, and hydroxyproline in the group. Additionally, a multiomics combined analysis illustrated significant positive correlations between the relative abundance of microflora, metabolites, and gene expression associated with immunity and growth. This study highlights the significant role of probiotics as effectors of intestinal microbial activity and shows that different probiotics can have a species-specific effect on the physiological regulation of the host. These findings contribute to a better understanding of the complex host-microbiome interactions in rainbow trout and may have implications for the use of probiotics in aquaculture. Probiotics are kinds of beneficial live microbes that impart beneficial effects on the host. Recent studies have proven that when given supplementation with probiotics, farmed fish showed improved disease prevention and growth promotion. However, the underlying metabolic functions regarding their involvement in regulating growth phenotypes, nutrient utilization, and immune response are not yet well understood in the aquaculture field. Given the active interactions between the gut microbiota and fish immune and growth performance, we conducted the supplementation experiments with the probiotics Bacillus velezensis and Lactobacillus sakei. The results showed that probiotics mediated intestinal microbiome- and microbiota-derived metabolites regulating the growth and immunity of fish, and different probiotics participated in the species-specific physiological regulation of the host. This study contributed to a better understanding of the functional interactions associated with host health and gut microbiota species. 10.1128/spectrum.03980-22
Use of probiotics in aquaculture of China-a review of the past decade. Wang Anran,Ran Chao,Wang Yanbo,Zhang Zhen,Ding Qianwen,Yang Yalin,Olsen Rolf Erik,Ringø Einar,Bindelle Jérôme,Zhou Zhigang Fish & shellfish immunology China is the largest aquaculture producer in the world. Antibiotics were extensively used to ensure the development of the intensive aquaculture; however, the use of antibiotics causes safety- and environment-associated problems. As an alternative strategy to antibiotics, aquatic probiotics have attracted attention. The microbial organisms used as probiotics or tested as potential probiotics in Chinese aquaculture belong to various taxonomic divisions, including Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and yeast. Moreover, the mixture of probiotic strains and synbiotics are also widely used. Studies on the mode of action of aquatic probiotics have extended our understanding of the probiotic effects, and novel mechanisms have been discovered, such as interference of quorum sensing. However, use of probiotics in Chinese aquaculture is still at an initial stage, and there are potential risks for some probiotic applications in aquaculture. Further regulation and management are required to normalize the production and usage of aquatic probiotics. In this review, we discuss species, effects, and mode of actions of probiotics in Chinese aquaculture since 2008. Challenges and future directions for research are also discussed. 10.1016/j.fsi.2018.12.026
Sustainable Fish Feeds with Insects and Probiotics Positively Affect Freshwater and Marine Fish Gut Microbiota. Animals : an open access journal from MDPI Aquaculture is the fastest-growing agricultural industry in the world. Fishmeal is an essential component of commercial fish diets, but its long-term sustainability is a concern. Therefore, it is important to find alternatives to fishmeal that have a similar nutritional value and, at the same time, are affordable and readily available. The search for high-quality alternatives to fishmeal and fish oil has interested researchers worldwide. Over the past 20 years, different insect meals have been studied as a potential alternate source of fishmeal in aquafeeds. On the other hand, probiotics-live microbial strains-are being used as dietary supplements and showing beneficial effects on fish growth and health status. Fish gut microbiota plays a significant role in nutrition metabolism, which affects a number of other physiological functions, including fish growth and development, immune regulation, and pathogen resistance. One of the key reasons for studying fish gut microbiota is the possibility to modify microbial communities that inhabit the intestine to benefit host growth and health. The development of DNA sequencing technologies and advanced bioinformatics tools has made metagenomic analysis a feasible method for researching gut microbes. In this review, we analyze and summarize the current knowledge provided by studies of our research group on using insect meal and probiotic supplements in aquafeed formulations and their effects on different fish gut microbiota. We also highlight future research directions to make insect meals a key source of proteins for sustainable aquaculture and explore the challenges associated with the use of probiotics. Insect meals and probiotics will undoubtedly have a positive effect on the long-term sustainability and profitability of aquaculture. 10.3390/ani13101633