Differential diagnosis of left ventricular hypertrophy: usefulness of multimodality imaging and tissue characterization with cardiac magnetic resonance.
Izgi Cemil,Vassiliou Vassilis,Baksi A John,Prasad Sanjay K
Echocardiography (Mount Kisco, N.Y.)
Differential diagnosis of asymmetrical left ventricular hypertrophy may be challenging, particularly in patients with history of hypertension. A middle-aged man underwent an echocardiographic examination during workup for hypertension, which unexpectedly showed significant asymmetrical septal hypertrophy and raised suspicion for hypertrophic cardiomyopathy. Cardiovascular magnetic resonance confirmed the asymmetrical hypertrophy. No myocardial late gadolinium contrast enhancement was seen. However, precontrast T1 mapping revealed a low native myocardial T1 value. This was highly suggestive of Anderson-Fabry disease, which was subsequently proved with very low alpha galactosidase enzyme levels and mutation analysis. The case illustrates clinical usefulness of multimodality imaging and the novel tissue characterization techniques for assessment of left ventricular hypertrophy.
10.1111/echo.13367
Role of cardiovascular magnetic resonance in the clinical evaluation of left ventricular hypertrophy: a 360° panorama.
The international journal of cardiovascular imaging
Left ventricular hypertrophy (LVH) is a frequent imaging finding in the general population. In order to identify the precise etiology, a comprehensive diagnostic approach should be adopted, including the prevalence of each entity that may cause LVH, family history, clinical, electrocardiographic and imaging findings. By providing a detailed evaluation of the myocardium, cardiovascular magnetic resonance (CMR) has assumed a central role in the differential diagnosis of left ventricular hypertrophy, with the technique of parametric imaging allowing more refined tissue characterization. This article aims to establish a parallel between pathophysiological features and imaging findings through the broad spectrum of LVH entities, emphasizing the role of CMR in the differential diagnosis.
10.1007/s10554-022-02774-x
Cardiovascular Magnetic Resonance for the Differentiation of Left Ventricular Hypertrophy.
Current heart failure reports
PURPOSE OF REVIEW:Left ventricular hypertrophy (LVH) is a common presentation encountered in clinical practice with a diverse range of potential aetiologies. Differentiation of pathological from physiological hypertrophy can be challenging but is crucial for further management and prognostication. Cardiovascular magnetic resonance (CMR) with advanced myocardial tissue characterisation is a powerful tool that may help to differentiate these aetiologies in the assessment of LVH. RECENT FINDINGS:The use of CMR for detailed morphological assessment of LVH is well described. More recently, advanced CMR techniques (late gadolinium enhancement, parametric mapping, diffusion tensor imaging, and myocardial strain) have been used. These techniques are highly promising in helping to differentiate key aetiologies of LVH and provide valuable prognostic information. Recent advancements in CMR tissue characterisation, such as parametric mapping, in combination with detailed morphological assessment and late gadolinium enhancement, provide a powerful resource that may help assess and differentiate important causes of LVH.
10.1007/s11897-020-00481-z
Left Ventricular Hypertrophy: Evaluation With Cardiac MRI.
Grajewski Karen G,Stojanovska Jadranka,Ibrahim El-Sayed H,Sayyouh Mohamed,Attili Anil
Current problems in diagnostic radiology
OBJECTIVE:Left ventricular hypertrophy (LVH) is a frequent problem in clinical practice and can be caused by diverse conditions including hypertension, aortic stenosis, hypertrophic cardiomyopathy, athletic training, infiltrative heart muscle disease, storage and metabolic disorders. Identification of the precise etiology can be challenging and is a common cause of referral for cardiac MRI (CMR). In this article, CMR findings in various causes of LVH will be reviewed with an emphasis on determination of etiology and emerging role of CMR in risk stratification. CONCLUSIONS:In patients with LVH, CMR allows precise determination of the severity and distribution of hypertrophy, evaluation of ventricular function, and tissue characterization. The information obtained from CMR enables identification of the etiology of LVH and may aid in determining prognosis and therapy.
10.1067/j.cpradiol.2019.09.005