Infiltrative classical monocyte-derived and SPP1 lipid-associated macrophages mediate inflammation and fibrosis in ANCA-associated glomerulonephritis.
Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association
BACKGROUND AND HYPOTHESIS:Kidney macrophage infiltration is a histological hallmark of vasculitic lesions and is strongly linked to disease activity in anti-neutrophil cytoplasmic antibodies (ANCA)-associated glomerulonephritis (AGN). The precise mechanisms by which kidney macrophages influence local inflammation and long-term damage remain largely unknown. METHODS:Here, we investigate kidney macrophage diversity using single-cell transcriptome analysis of 25 485 freshly retrieved unfrozen, high-quality kidney CD45+ immune cells from five AGN patients during active disease, a lupus nephritis and nephrectomy control. Detailed subclustering of myeloid cells was performed to identify disease-specific macrophage subtypes. Next, transcriptome differences between macrophage subsets and disease serotypes were assessed. Findings were validated by immunostainings of an extended cohort of kidney biopsies and flow cytometric analysis of peripheral blood monocytes. RESULTS:Four main macrophage subsets were identified, including a classical monocyte-derived macrophage (MDM) subset expressing a chemotactic (CXCL2, CXCL3, CXCL8, CCL3) and pro-inflammatory (IL1β, TNF) set of markers and a osteopontin/SPP1+ lipid-associated macrophage (SPP1 LAMs) subtype exhibiting distinctive upregulation of fibrotic genesets. AGN samples revealed a markedly increased proportion of CD163+ macrophages, predominantly composed of classical MDMs, accompanied by resident-like C1Q macrophages, and SPP1 LAMs An analogous trend was observed in the expansion of peripheral blood classical monocytes during active disease. The proteinase 3 (PR3)-AGN subtype exhibited heightened classical MDM and SPP1 LAM infiltration and markers of acute inflammation, while interferon signaling and markers of chronicity were reduced compared to myeloperoxidase (MPO)-AGN. CONCLUSIONS:Our findings highlight the expression of inflammatory and fibrotic genes by kidney macrophage subsets in AGN. Classical monocyte dysregulation might contribute to inflammation in the pathogenesis of AGN. Targeting these specific monocyte/macrophage subsets may potentially control the inflammatory cascade and attenuate resulting fibrosis in AGN and kidney disease in general.
10.1093/ndt/gfae292
Osteopontin deficiency reduces kidney damage from hypercholesterolemia in Apolipoprotein E-deficient mice.
Pei Zouwei,Okura Takafumi,Nagao Tomoaki,Enomoto Daijiro,Kukida Masayoshi,Tanino Akiko,Miyoshi Ken-Ichi,Kurata Mie,Higaki Jitsuo
Scientific reports
Hypercholesterolemia is a well-established risk factor for kidney injury, which can lead to chronic kidney disease (CKD). Osteopontin (OPN) has been implicated in the pathology of several renal conditions. This study was to evaluate the effects of OPN on hypercholesterolemia induced renal dysfunction. Eight-week-old male mice were divided into 4 groups: apolipoprotein E knockout (ApoE(-/-)) and ApoE/OPN knockout (ApoE(-/-)/OPN(-/-)) mice fed a normal diet (ND) or high cholesterol diet (HD). After 4 weeks, Periodic acid-Schiff (PAS) and oil red O staining revealed excessive lipid deposition in the glomeruli of ApoE(-/-)HD mice, however, significantly suppressed in ApoE(-/-)/OPN(-/-)HD mice. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) expression was lower in the glomeruli of ApoE(-/-)/OPN(-/-)HD mice than ApoE(-/-)HD mice. In vitro study, primary mesangial cells were incubated with recombinant mouse OPN (rmOPN). RmOPN induced LOX-1 mRNA and protein expression in primary mesangial cells. Pre-treatment with an ERK inhibitor suppressed the LOX-1 gene expression induced by rmOPN. These results indicate that OPN contributes to kidney damage in hypercholesterolemia and suggest that inhibition of OPN may provide a potential therapeutic target for the prevention of hypercholesterolemia.
10.1038/srep28882
Secreted phosphoprotein 1 exacerbates renal ischemia-reperfusion injury by inhibiting PI3K/AKT signaling pathway.
Tissue & cell
BACKGROUND:Renal ischemia-reperfusion injury (IRI) is a prevalent reason for acute kidney injury and a key clinical issue for patients under anesthesia and about to have surgery. We aim to investigate the Secreted phosphoprotein 1 (SPP1) role in renal IRI and the underlying mechanisms. METHODS:Using Gene Expression Omnibus (GEO) database helped in analyzing the SPP1 expression in renal IRI. We established two models, a mouse renal ischemia-reperfusion (I/R) besides a hypoxia-reoxygenation (H/R) HK-2 cell. Renal tubular lesions were measured using H&E staining. Depending on the TUNEL assay, immunohistochemistry, qRT-PCR, as well as western blot, we applied the assessment of apoptosis and apoptosis-associated protein levels. At the same time, a western blot was performed for assessing PI3K/AKT pathway-associated proteins. RESULTS:GEO data and experimental validation revealed elevated SPP1 content in the kidney tissues of renal I/R mice more than in sham mice. In vitro and in vivo studies revealed an increase in cell apoptosis due to SPP1 overexpression, but the opposite is true when SPP1 is silenced. SPP1 downregulation led to high p-PI3K and p-AKT protein levels, and the LY294002 application inhibited SPP1 inhibition-mediated anti-apoptotic effect CONCLUSION: Taken together, SPP1 exacerbates renal IRI in vivo and in vitro via promoting programmed cell death by inhibiting PI3K/AKT signaling pathway.
10.1016/j.tice.2023.102154
Single-cell transcriptome analysis reveals status changes of immune cells in chronic kidney disease.
Frontiers in medicine
Background and aims:The immune system plays a crucial role in the development of kidney diseases. Chronic kidney disease (CKD) can lead to various complications, potentially affecting multiple systems throughout the body. Currently, the description of the immune system in human CKD is not comprehensive enough. Constructing a CKD kidney atlas using single-cell RNA sequencing (scRNA-seq) can provide deeper insights into the composition and functional changes of immune cells in CKD, facilitating the discovery of new therapeutic targets. Methods:We processed and integrated scRNA-seq datasets from healthy and CKD kidneys from three independent cohorts using the same approach (including 42 normal samples and 23 chronic kidney disease samples). Subsequently, we conducted gene enrichment and intercellular communication analysis to construct an immune cell atlas of the kidneys in CKD patients. Results:We identified nine major kidney cell clusters. Further clustering analysis of different immune cell clusters revealed that, compared to normal kidneys, CKD patients' kidneys had decreased CD16+ NK cells while CD4+ naive helper T cells and CCR7+ DC increased. Partial activation of the WNT signaling pathway was observed in T cells and NK cells of CKD patients, while some metabolism-related genes were inhibited. Myeloid cell subgroups also exhibited abnormal signaling pathway alterations. Additionally, we discovered a unique population of SPP1 macrophages in CKD, which are recruited by chemokines released from aPT and aTAL cell subpopulations. These SPP1 macrophages may promote cellular fibrosis through the signaling of SPP1, FN1, and various receptors. Conclusion:We established a human CKD kidney immune cell atlas and identified SPP1 macrophages as a unique cell type in CKD. The interaction between SPP1 macrophages and damaged cells may serve as a potential therapeutic target for treating CKD in the future.
10.3389/fmed.2024.1434535
Expression, roles, receptors, and regulation of osteopontin in the kidney.
Xie Y,Sakatsume M,Nishi S,Narita I,Arakawa M,Gejyo F
Kidney international
Osteopontin (OPN) is a secreted glycoprotein in both phosphorylated and non-phosphorylated forms. It contains an Arg-Gly-Asp cell-binding sequence and a thrombin-cleavage site. OPN is mainly present in the loop of Henle and distal nephrons in normal kidneys in animals and humans. After renal damage, OPN expression may be significantly up-regulated in all tubule segments and glomeruli. Studies utilizing OPN gene-deficient mice, antisense-treated or anti-OPN-treated animals have demonstrated that OPN promotes accumulation of macrophages, and may play a role in macrophage-mediated renal injury, but that the effect may be mild and short-lived. On the other hand, OPN has some renoprotective actions in renal injury, such as increasing tolerance to acute ischemia, inhibiting inducible nitric oxide synthase and suppressing nitric oxide synthesis, reducing cell peroxide levels and promoting the survival of cells exposed to hypoxia, decreasing cell apoptosis and participating in the regeneration of cells. In addition, OPN is associated with renal stones, but whether it acts as a promoter or inhibitor of stone formation is controversial. It has been demonstrated that OPN receptors include two families: integrin and CD44. The OPN integrin receptors include alpha(v)beta(3), alpha(v)beta(1), alpha(v)beta(5) and alpha(9)beta(1), and alpha(4)beta(1). In normal human kidneys, standard CD44 is expressed most dominantly. Different OPN functions are mediated via distinct receptors. Parathyroid hormone, vitamin D(3), calcium, phosphate and some cytokines increase OPN expression in vitro or in vivo, whereas female sex hormones and angiotensin-converting enzyme inhibitors or angiotensin II receptor antagonists decrease OPN expression in some renal damage states.
10.1046/j.1523-1755.2001.00032.x
Osteopontin deletion attenuates cyst growth but exacerbates fibrosis in mice with cystic kidney disease.
Physiological reports
Osteopontin (OPN) is a multi-functional glycoprotein that coordinates the innate immune response, prevents nanocrystal formation in renal tubule fluid, and is a biomarker for kidney injury. OPN expression is markedly increased in cystic epithelial cells of polycystic kidney disease (PKD) kidneys; however, its role in PKD progression remains unclear. We investigated the in vitro effects of recombinant OPN on the proliferation of tubular epithelial cells from PKD and normal human kidneys and in vivo effects of OPN deletion on kidney cyst formation, fibrosis, and mineral metabolism in pcy/pcy mice, a non-orthologous model of autosomal-dominant PKD. In vitro studies revealed that OPN enhanced the proliferation of PKD cells but had no effect on normal kidney cells. Deletion of OPN in pcy/pcy mice significantly reduced kidney cyst burden; however, this was accompanied by increased fibrosis and no change in kidney function. The loss of OPN had no effect on kidney macrophage numbers, cyst epithelial cell proliferation, or apoptosis. Furthermore, there was no difference in kidney mineral deposition or mineral metabolism parameters between pcy/pcy mice with and without OPN expression. Global deletion of OPN reduced kidney cyst burden, while paradoxically exacerbating kidney fibrosis in mice with cystic kidney disease.
10.14814/phy2.70038
Genetics of osteopontin in patients with chronic kidney disease: The German Chronic Kidney Disease study.
PLoS genetics
Osteopontin (OPN), encoded by SPP1, is a phosphorylated glycoprotein predominantly synthesized in kidney tissue. Increased OPN mRNA and protein expression correlates with proteinuria, reduced creatinine clearance, and kidney fibrosis in animal models of kidney disease. But its genetic underpinnings are incompletely understood. We therefore conducted a genome-wide association study (GWAS) of OPN in a European chronic kidney disease (CKD) population. Using data from participants of the German Chronic Kidney Disease (GCKD) study (N = 4,897), a GWAS (minor allele frequency [MAF]≥1%) and aggregated variant testing (AVT, MAF<1%) of ELISA-quantified serum OPN, adjusted for age, sex, estimated glomerular filtration rate (eGFR), and urinary albumin-to-creatinine ratio (UACR) was conducted. In the project, GCKD participants had a mean age of 60 years (SD 12), median eGFR of 46 mL/min/1.73m2 (p25: 37, p75: 57) and median UACR of 50 mg/g (p25: 9, p75: 383). GWAS revealed 3 loci (p<5.0E-08), two of which replicated in the population-based Young Finns Study (YFS) cohort (p<1.67E-03): rs10011284, upstream of SPP1 encoding the OPN protein and related to OPN production, and rs4253311, mapping into KLKB1 encoding prekallikrein (PK), which is processed to kallikrein (KAL) implicated through the kinin-kallikrein system (KKS) in blood pressure control, inflammation, blood coagulation, cancer, and cardiovascular disease. The SPP1 gene was also identified by AVT (p = 2.5E-8), comprising 7 splice-site and missense variants. Among others, downstream analyses revealed colocalization of the OPN association signal at SPP1 with expression in pancreas tissue, and at KLKB1 with various plasma proteins in trans, and with phenotypes (bone disorder, deep venous thrombosis) in human tissue. In summary, this GWAS of OPN levels revealed two replicated associations. The KLKB1 locus connects the function of OPN with PK, suggestive of possible further post-translation processing of OPN. Further studies are needed to elucidate the complex role of OPN within human (patho)physiology.
10.1371/journal.pgen.1010139
Single cell cortical bone transcriptomics define novel osteolineage gene sets altered in chronic kidney disease.
Frontiers in endocrinology
Introduction:Due to a lack of spatial-temporal resolution at the single cell level, the etiologies of the bone dysfunction caused by diseases such as normal aging, osteoporosis, and the metabolic bone disease associated with chronic kidney disease (CKD) remain largely unknown. Methods:To this end, flow cytometry and scRNAseq were performed on long bone cells from Sost-cre/Ai9 mice, and pure osteolineage transcriptomes were identified, including novel osteocyte-specific gene sets. Results:Clustering analysis isolated osteoblast precursors that expressed , , and , and a mature osteoblast population defined by , , and . Osteocytes were demarcated by , , , , , and . We validated our scRNAseq using integrative promoter occupancy ATACseq coupled with transcriptomic analyses of a conditional, temporally differentiated MSC cell line. Further, trajectory analyses predicted osteoblast-to-osteocyte transitions defined pathways associated with a distinct metabolic shift as determined by single-cell flux estimation analysis (scFEA). Using the adenine mouse model of CKD, at a time point prior to major skeletal alterations, we found that gene expression within all stages of the osteolineage was disturbed. Conclusion:In sum, distinct populations of osteoblasts/osteocytes were defined at the single cell level. Using this roadmap of gene assembly, we demonstrated unrealized molecular defects across multiple bone cell populations in a mouse model of CKD, and our collective results suggest a potentially earlier and more broad bone pathology in this disease than previously recognized.
10.3389/fendo.2023.1063083
SPP1 and UMOD gene variants are synergistically associated with risk of renal stone disease.
Gene
OBJECTIVE:Calcium and oxalate are the most abundant metabolites present in the stone matrix. The SPP1 and UMOD gene has specific expression in kidneys and are involved in various stages of stone formation. Therefore, genetic variants in the SPP1 and UMOD genes may enhance the development of renal stone disease. This study has been designed to understand the association of genetic variants of SPP1 and UMOD genes with renal stone disease. MATERIALS AND METHOD:A prospective study has been carried out, including 150 renal stone disease patients and 150 healthy individuals. Biochemical parameters were performed, including serum calcium levels, creatinine, parathyroid hormone, and 24-Hour urine metabolites. The genotyping of SPP1 (rs1126616) and UMOD (rs4293393) gene variants were performed using a customized TaqMan probe. T-test was used for continuous biochemical data analysis. The Chi-square test has been applied to assess the risk of a particular genotype associated with renal stone disease. In addition, correlation analysis for biochemical parameters and genetic variants with the renal stone disease has been performed using Shapley additive explanations (SHAP) values calculated with the help of the pycaret library. RESULT:Renal stone patients had significantly higher levels of parathyroid hormone (93.37 ± 52.78 pg/ml vs 64.67 ± 31.50 pg/ml, P=<0.0001), serum creatinine (0.94 ± 0.38 mg/dl vs 0.77 ± 0.17 mg/dl, P=<0.0001) and 24hr urine metabolites in comparison to the healthy controls. Heterozygous (CT) variant of SPP1 and homozygous (GG) variant of UMOD genes were significantly associated with an increased risk of developing the renal stone disease (p = 0.0100, OR = 2.06, 95 %CI = 1.13-3.75; p=<0.0001, OR = 5.773, 95 % CI = 2.03-16.38, respectively). Individuals with hyperparathyroidism and CC (SPP1) and GG (UMOD) genotypes have a high risk (P = 0.0055, OR = 2.75, 95 %CI = 1.35-5.67; P = 0.0129, OR = 10.03, 95 %CI = 1.60-110.40, respectively) of developing a renal stone. In addition, individuals with hypercalciuria and TT genotype of SPP1 (P = 0.0112, OR = 2.92, 95 % CI = 1.33-6.35), AG genotype of UMOD (P=<0.0001, OR = 5.45, 95 %CI = 2.24-13.96) and GG genotype of UMOD (P=<0.0001, OR = 10.02, 95 %CI = 3.53-24.63) have high risk of developing renal stones. Moreover, Individuals with hyperoxaluria and AG + GG (UMOD) genotype have a greater risk (P=<0.0001, OR = 7.35, 95 % CI = 3.83-13.68) of developing a renal stone. The renal stone risk was persistent (P=<0.0002, OR = 2.44, 95 % CI = 1.52-3.86) when analyzed for the synergistic effect of risk genotypes of SPP1 (CT) and UMOD (GG) gene. Further, correlation analysis also confirmed the strong association between genetic variants and renal stone development. CONCLUSION:Genetic variants of the SPP1 and UMOD genes were associated with renal stone disease. In the presence of risk genotype and hyperparathyroidism, hypercalciuria, and hyperoxaluria, the susceptibility to develop the renal stone disease risk gets modulated.
10.1016/j.gene.2023.147264
Urinary SPP1 has potential as a non-invasive diagnostic marker for focal segmental glomerulosclerosis.
FEBS open bio
Focal segmental glomerulosclerosis (FSGS) is a type of chronic glomerular nephropathy showing characteristic glomerular sclerosis, diagnosed by kidney biopsy. However, it is difficult and expensive to monitor disease progression with repeated renal biopsy in clinical practice, and thus here we explored the feasibility of urine biomarkers as non-invasive diagnostic tools. We downloaded scRNA-seq datasets of 20 urine cell samples and 3 kidney tissues and obtained two gene lists encoding extracellular proteins for bioinformatic analysis; in addition, we identified key EP-Genes by immunohistochemical staining and performed bulk RNA sequencing with 12 urine samples. We report that urine cells and kidney cells were correlated. A total of 64 EP-Genes were acquired by intersecting genes of distal tubular cluster with extracellular proteins. Function enrichment analysis showed that EP-Genes might be involved in the immune response and extracellular components. Six key EP-Genes were identified and correlated with renal function. IMC showed that key EP-Genes were located mainly in tubules. Cross verification and examination of a urine RNAseq dataset showed that SPP1 had diagnostic potential for FSGS. The presence of urine SPP1 was primarily associated with macrophage infiltration in kidney, and the pathogenesis of FSGS may be related to innate immunity. Urinary cells seemed to be strongly similar to kidney cells. In summary, SPP1 levels reflect renal function and may have potential as a biomarker for non-invasive diagnosis of FSGS.
10.1002/2211-5463.13704
The role of osteopontin in kidney diseases.
Kaleta Beata
Inflammation research : official journal of the European Histamine Research Society ... [et al.]
BACKGROUND:Osteopontin (OPN) is a pleiotropic glycoprotein expressed in various cell types in animals and in humans, including bone, immune, smooth muscle, epithelial and endothelial cells. Moreover, OPN is found in kidneys (in the thick ascending limbs of the loop of Henle and in distal nephrons) and urine. The protein plays an important role in mineralization and bone resorption. In addition, OPN is involved in the regulation of immunity and inflammation, angiogenesis and apoptosis. It was demonstrated that OPN and some OPN gene polymorphic variants are associated with the pathogenesis and progression of multiple disorders, such as cancer, autoimmune, neurodegenerative and cardiovascular diseases. Moreover, recent studies suggested that OPN is associated with the pathogenesis of renal failure. METHODS:In this review, I briefly discussed the role of OPN and its gene polymorphisms in kidney physiology, as well as in various kidney diseases. FINDINGS AND CONCLUSION:Most studies reported that OPN expression is elevated in urolithiasis, and also in acute and chronic kidney diseases, and in renal allograft dysfunction. Moreover, it was demonstrated that polymorphic variants of the OPN gene may be associated with renal failure. However, some reports suggested that OPN is essential for tubulogenesis, and that it inhibits calcium oxalate crystal formation and retention, nitric oxide synthesis, cell apoptosis and promotes cell regeneration. Thus, further studies are required to fully understand the role of OPN in kidney physiology and pathology. Eventually, these studies may result in the identification of OPN as a valuable marker for renal dysfunction prognosis and treatment.
10.1007/s00011-018-1200-5
Immune landscape and the key role of APOE+ monocytes of lupus nephritis under the single-cell and spatial transcriptional vista.
Clinical and translational medicine
BACKGROUND:Lupus nephritis (LN) is among the most common complication of systemic lupus erythematosus (SLE) with high mortality and morbidity. The analysis of LN kidney's local immune response through single-cell and spatial transcriptome enables the study of potential therapeutic targets. METHODS:By single cell sequencing and spatial transcriptome, we profile cells from LN kidney and normal kidney tissues to characterize cellular composition and elucidate the potential upstream monocyte/macrophage (Mono/MΦ) initiating the auto-immune response. After the high-throughput synergy screening, we performed the immunofluorescence to identify the specific cells in LN patients. The function experiments were finished by flow cytometry and Elisa. RESULTS:By immunofluorescence and spatial transcriptome, we identified differential subsets of Mono/MΦ and demonstrated that they exhibit temporal expression of TIMP1, IL1B, SPP1 and APOE. With the function experiments, we found that the APOE+ Mono may be compensatorily increased in LN, and the capacity of antigen presenting was decreased with the overexpression of APOE. Furthermore, how do the LN-specific Mono/MΦ transport in and out the glomerulus to active the local immune response remains unclear. Our results showed that lymphangiogenesis occurred in LN kidneys but not in normal kidneys, suggesting the presence of a new lymphatic vessel may serve as a 'green channel' for LN-specific Mono/MΦ. CONCLUSIONS:In LN, APOE+ Mono are compensatorily elevated, with decreased antigen presenting ability and reduced secretion of interferons. The lymphangiogenesis in LN prompts the trafficking of Mono/MΦ in LN kidney.
10.1002/ctm2.1237
Kidney fibrosis molecular mechanisms Spp1 influences fibroblast activity through transforming growth factor beta smad signaling.
iScience
Kidney fibrosis marks a critical phase in chronic kidney disease with its molecular intricacies yet to be fully understood. This study's deep dive into single-cell sequencing data of renal tissue during fibrosis pinpoints the pivotal role of fibroblasts and myofibroblasts in the fibrotic transformation. Through identifying distinct cell populations and conducting transcriptomic analysis, Spp1 emerged as a key gene associated with renal fibrosis. The study's experimental findings further confirm Spp1's vital function in promoting fibroblast to myofibroblast differentiation via the TGF-β/Smad signaling pathway, underscoring its contribution to fibrosis progression. The suppression of Spp1 expression notably hindered this differentiation process, spotlighting Spp1 as a promising therapeutic target for halting renal fibrosis. This condensed summary encapsulates the essence and findings of the original research within the specified word limit.
10.1016/j.isci.2024.109839
Systems level identification of a matrisome-associated macrophage polarisation state in multi-organ fibrosis.
eLife
Tissue fibrosis affects multiple organs and involves a master-regulatory role of macrophages which respond to an initial inflammatory insult common in all forms of fibrosis. The recently unravelled multi-organ heterogeneity of macrophages in healthy and fibrotic human disease suggests that macrophages expressing osteopontin (SPP1) associate with lung and liver fibrosis. However, the conservation of this SPP1 macrophage population across different tissues and its specificity to fibrotic diseases with different etiologies remain unclear. Integrating 15 single-cell RNA-sequencing datasets to profile 235,930 tissue macrophages from healthy and fibrotic heart, lung, liver, kidney, skin, and endometrium, we extended the association of SPP1 macrophages with fibrosis to all these tissues. We also identified a subpopulation expressing matrisome-associated genes (e.g., matrix metalloproteinases and their tissue inhibitors), functionally enriched for ECM remodelling and cell metabolism, representative of a matrisome-associated macrophage (MAM) polarisation state within SPP1 macrophages. Importantly, the MAM polarisation state follows a differentiation trajectory from SPP1 macrophages and is associated with a core set of regulon activity. SPP1 macrophages without the MAM polarisation state (SPP1MAM) show a positive association with ageing lung in mice and humans. These results suggest an advanced and conserved polarisation state of SPP1 macrophages in fibrotic tissues resulting from prolonged inflammatory cues within each tissue microenvironment.
10.7554/eLife.85530
Single-cell transcriptomics and chromatin accessibility profiling elucidate the kidney-protective mechanism of mineralocorticoid receptor antagonists.
The Journal of clinical investigation
Mineralocorticoid excess commonly leads to hypertension (HTN) and kidney disease. In our study, we used single-cell expression and chromatin accessibility tools to characterize the mineralocorticoid target genes and cell types. We demonstrated that mineralocorticoid effects were established through open chromatin and target gene expression, primarily in principal and connecting tubule cells and, to a lesser extent, in segments of the distal convoluted tubule cells. We examined the kidney-protective effects of steroidal and nonsteroidal mineralocorticoid antagonists (MRAs), as well as of amiloride, an epithelial sodium channel inhibitor, in a rat model of deoxycorticosterone acetate, unilateral nephrectomy, and high-salt consumption-induced HTN and cardiorenal damage. All antihypertensive therapies protected against cardiorenal damage. However, finerenone was particularly effective in reducing albuminuria and improving gene expression changes in podocytes and proximal tubule cells, even with an equivalent reduction in blood pressure. We noted a strong correlation between the accumulation of injured/profibrotic tubule cells expressing secreted posphoprotein 1 (Spp1), Il34, and platelet-derived growth factor subunit b (Pdgfb) and the degree of fibrosis in rat kidneys. This gene signature also showed a potential for classifying human kidney samples. Our multiomics approach provides fresh insights into the possible mechanisms underlying HTN-associated kidney disease, the target cell types, the protective effects of steroidal and nonsteroidal MRAs, and amiloride.
10.1172/JCI157165
Single-cell transcriptomic profiles in the pathophysiology within the microenvironment of early diabetic kidney disease.
Cell death & disease
Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease, resulting in a huge socio-economic impact. Kidney is a highly complex organ and the pathogenesis underlying kidney organization involves complex cell-to-cell interaction within the heterogeneous kidney milieu. Advanced single-cell RNA sequencing (scRNA-seq) could reveal the complex architecture and interaction with the microenvironment in early DKD. We used scRNA-seq to investigate early changes in the kidney of db/m mice and db/db mice at the 14th week. Uniform Manifold Approximation and Projection were applied to classify cells into different clusters at a proper resolution. Weighted gene co-expression network analysis was used to identify the key molecules specifically expressed in kidney tubules. Information of cell-cell communication within the kidney was obtained using receptor-ligand pairing resources. In vitro model, human subjects, and co-detection by indexing staining were used to identify the pathophysiologic role of the hub genes in DKD. Among four distinct subsets of the proximal tubule (PT), lower percentages of proliferative PT and PT containing AQP4 expression (PT) in db/db mice induced impaired cell repair activity and dysfunction of renin-angiotensin system modulation in early DKD. We found that ferroptosis was involved in DKD progression, and ceruloplasmin acted as a central regulator of the induction of ferroptosis in PT. In addition, lower percentages of thick ascending limbs and collecting ducts with impaired metabolism function were also critical pathogenic features in the kidney of db/db mice. Secreted phosphoprotein 1 (SPP1) mediated pathogenic cross-talk in the tubular microenvironment, as validated by a correlation between urinary SPP1/Cr level and tubular injury. Finally, mesangial cell-derived semaphorin 3C (SEMA3C) further promoted endothelium-mesenchymal transition in glomerular endothelial cells through NRP1 and NRP2, and urinary SEMA3C/Cr level was positively correlated with glomerular injury. These data identified the hub genes involved in pathophysiologic changes within the microenvironment of early DKD.
10.1038/s41419-023-05947-1
Identification of kidney injury released circulating osteopontin as causal agent of respiratory failure.
Science advances
Tissue injury can drive secondary organ injury; however, mechanisms and mediators are not well understood. To identify interorgan cross-talk mediators, we used acute kidney injury (AKI)-induced acute lung injury (ALI) as a clinically important example. Using kidney and lung single-cell RNA sequencing after AKI in mice followed by ligand-receptor pairing analysis across organs, kidney ligands to lung receptors, we identify kidney-released circulating osteopontin (OPN) as a novel AKI-ALI mediator. OPN release from kidney tubule cells triggered lung endothelial leakage, inflammation, and respiratory failure. Pharmacological or genetic OPN inhibition prevented AKI-ALI. Transplantation of ischemic kidneys caused AKI-ALI, but not of ischemic OPN-global knockout kidneys, identifying kidney-released OPN as necessary interorgan signal to cause AKI-ALI. We show that OPN serum levels are elevated in patients with AKI and correlate with kidney injury. Our results demonstrate feasibility of using ligand-receptor analysis across organs to identify interorgan cross-talk mediators and may have important therapeutic implications in human AKI-ALI and multiorgan failure.
10.1126/sciadv.abm5900