logo logo
Multi-omics Mendelian randomization integrating GWAS, eQTL and pQTL data revealed GSTM4 as a potential drug target for migraine. The journal of headache and pain INTRODUCTION:Migraine, as a complex neurological disease, brings heavy burden to patients and society. Despite the availability of established therapies, existing medications have limited efficacy. Thus, we aimed to find the drug targets that improve the prognosis of migraine. METHOD:We used Mendelian Randomization (MR) and Summary-data-based MR (SMR) analyses to study possible drug targets of migraine by summary statistics from FinnGen cohorts (nCase = 44,616, nControl = 367,565), with further replication in UK Biobank (nCase = 26,052, nControl = 487,214). Genetic instruments were obtained from eQTLGen and UKB-PPP to verify the drug targets at the gene expression and protein levels. The additional analyses including Bayesian co-localization, the heterogeneity in dependent instruments(HEIDI), Linkage Disequilibrium Score(LDSC), bidirectional MR, multivariate MR(MVMR), heterogeneity test, horizontal pleiotropy test, and Steiger filtering were implemented to consolidate the findings further. Lastly, drug prediction analysis and phenome-wide association study(PheWAS) were employed to imply the possibility of drug targets for future clinical applications. RESULT:The MR analysis of eQTL data showed that four drug targets (PROCR, GSTM4, SLC4A1, and TNFRSF10A) were significantly associated with migraine risk in both the FinnGen and UK Biobank cohorts. However, only GSTM4 exhibited consistent effect directions across the two outcomes(Discovery cohort: OR(95%CI) = 0.94(0.93-0.96); p = 2.70e - 10; Replication cohort: OR(95%CI) = 0.93(0.91-0.94); p = 4.21e - 17). Furthermore, GSTM4 passed the SMR at p < 0.05 and HEIDI test at p > 0.05 at both the gene expression and protein levels. The protein-level MR analysis revealed a strong correlation between genetically predicted GSTM4 with a lower incidence of migraine and its subtypes(Overall migraine: OR(95%CI) = 0.91(0.87-0.95); p = 6.98e-05; Migraine with aura(MA): OR(95%CI) = 0.90(0.85-0.96); p = 2.54e-03; Migraine without aura(MO): OR(95%CI) = 0.90(0.83-0.96); p = 2.87e-03), indicating a strong co-localization relationship (PPH4 = 0.86). Further analyses provided additional validation for the possibility of GSTM4 as a migraine treatment target. CONCLUSION:This study identifies GSTM4 as a potential druggable gene and promising therapeutic target for migraine. 10.1186/s10194-024-01828-w
Integrating genetic regulation and single-cell expression with GWAS prioritizes causal genes and cell types for glaucoma. Nature communications Primary open-angle glaucoma (POAG), characterized by retinal ganglion cell death, is a leading cause of irreversible blindness worldwide. However, its molecular and cellular causes are not well understood. Elevated intraocular pressure (IOP) is a major risk factor, but many patients have normal IOP. Colocalization and Mendelian randomization analysis of >240 POAG and IOP genome-wide association study (GWAS) loci and overlapping expression and splicing quantitative trait loci (e/sQTLs) in 49 GTEx tissues and retina prioritizes causal genes for 60% of loci. These genes are enriched in pathways implicated in extracellular matrix organization, cell adhesion, and vascular development. Analysis of single-nucleus RNA-seq of glaucoma-relevant eye tissues reveals that the POAG and IOP colocalizing genes and genome-wide associations are enriched in specific cell types in the aqueous outflow pathways, retina, optic nerve head, peripapillary sclera, and choroid. This study nominates IOP-dependent and independent regulatory mechanisms, genes, and cell types that may contribute to POAG pathogenesis. 10.1038/s41467-023-44380-y
Proteogenomic Data Integration Reveals CXCL10 as a Potentially Downstream Causal Mediator for IL-6 Signaling on Atherosclerosis. Circulation BACKGROUND:Genetic and experimental studies support a causal involvement of IL-6 (interleukin-6) signaling in atheroprogression. Although trials targeting IL-6 signaling are underway, any benefits must be balanced against an impaired host immune response. Dissecting the mechanisms that mediate the effects of IL-6 signaling on atherosclerosis could offer insights about novel drug targets with more specific effects. METHODS:Leveraging data from 522 681 individuals, we constructed a genetic instrument of 26 variants in the gene encoding the IL-6R (IL-6 receptor) that proxied for pharmacological IL-6R inhibition. Using Mendelian randomization, we assessed its effects on 3281 plasma proteins quantified with an aptamer-based assay in the INTERVAL cohort (n=3301). Using mediation Mendelian randomization, we explored proteomic mediators of the effects of genetically proxied IL-6 signaling on coronary artery disease, large artery atherosclerotic stroke, and peripheral artery disease. For significant mediators, we tested associations of their circulating levels with incident cardiovascular events in a population-based study (n=1704) and explored the histological, transcriptomic, and cellular phenotypes correlated with their expression levels in samples from human atherosclerotic lesions. RESULTS:We found significant effects of genetically proxied IL-6 signaling on 70 circulating proteins involved in cytokine production/regulation and immune cell recruitment/differentiation, which correlated with the proteomic effects of pharmacological IL-6R inhibition in a clinical trial. Among the 70 significant proteins, genetically proxied circulating levels of CXCL10 (C-X-C motif chemokine ligand 10) were associated with risk of coronary artery disease, large artery atherosclerotic stroke, and peripheral artery disease, with up to 67% of the effects of genetically downregulated IL-6 signaling on these end points mediated by decreases in CXCL10. Higher midlife circulating CXCL10 levels were associated with a larger number of cardiovascular events over 20 years, whereas higher expression in human atherosclerotic lesions correlated with a larger lipid core and a transcriptomic profile reflecting immune cell infiltration, adaptive immune system activation, and cytokine signaling. CONCLUSIONS:Integrating multiomics data, we found a proteomic signature of IL-6 signaling activation and mediators of its effects on cardiovascular disease. Our analyses suggest the interferon-γ-inducible chemokine CXCL10 to be a potentially causal mediator for atherosclerosis in 3 vascular compartments and, as such, could serve as a promising drug target for atheroprotection. 10.1161/CIRCULATIONAHA.123.064974
Serum proteome profiling reveals HGFA as a candidate biomarker for pulmonary arterial hypertension. Respiratory research BACKGROUND:Identification and validation of potential biomarkers could facilitate the identification of pulmonary arterial hypertension (PAH) and thus aid to study their roles in the disease process. METHODS:We used the isobaric tag for relative and absolute quantitation approaches to compare the protein profiles between the serum of PAH patients and the controls. Bioinformatics analyses and enzyme-linked immunosorbent assay (ELISA) identification of PAH patients and the controls were performed to identify the potential biomarkers. The receiver operating characteristic curve (ROC) analysis was used to evaluate the diagnostic performance of these potential biomarkers. Mendelian randomization (MR) analysis further clarified the relationship between the potential biomarkers and PAH. Additionally, the expression levels of the potential biomarkers were further validated in two PAH animal models (monocrotaline-PH and Sugen5416 plus hypoxia-PH) using ELISA and reverse transcription-quantitative PCR (RT-qPCR). RESULTS:We identified significant changes in three proteins including heparanase (HPSE), gelsolin (GSN), and hepatocyte growth factor activator (HGFA) in PAH patients. The ROC analysis showed that the areas under the curve of HPSE, GSN, and HGFA in differentiating PAH patients from controls were 0.769, 0.777, and 0.964, respectively. HGFA was correlated with multiple parameters of right ventricular functions in PAH patients. Besides proteomic analysis, we also used MR method to demonstrate the causal link between genetically reduced HGFA levels and an increased risk of PAH. In subsequent validation study in PAH animal models, the mRNA expression levels of HGFA in the lung tissues were significantly lower in PAH rat models than in controls. In the rat models, serum levels of HGFA were lower compared to the control group and showed a negative correlation with right ventricular systolic pressure. CONCLUSION:The study demonstrated that HGFA might be a promising biomarker for noninvasive detection of PAH. 10.1186/s12931-024-03036-1
Mining the Plasma Proteome for Insights into the Molecular Pathology of Pulmonary Arterial Hypertension. American journal of respiratory and critical care medicine Pulmonary arterial hypertension (PAH) is characterized by structural remodeling of pulmonary arteries and arterioles. Underlying biological processes are likely reflected in a perturbation of circulating proteins. To quantify and analyze the plasma proteome of patients with PAH using inherited genetic variation to inform on underlying molecular drivers. An aptamer-based assay was used to measure plasma proteins in 357 patients with idiopathic or heritable PAH, 103 healthy volunteers, and 23 relatives of patients with PAH. In discovery and replication subgroups, the plasma proteomes of PAH and healthy individuals were compared, and the relationship to transplantation-free survival in PAH was determined. To examine causal relationships to PAH, protein quantitative trait loci (pQTL) that influenced protein levels in the patient population were used as instruments for Mendelian randomization (MR) analysis. From 4,152 annotated plasma proteins, levels of 208 differed between patients with PAH and healthy subjects, and 49 predicted long-term survival. MR based on -pQTL located in proximity to the encoding gene for proteins that were prognostic and distinguished PAH from health estimated an adverse effect for higher levels of netrin-4 (odds ratio [OR], 1.55; 95% confidence interval [CI], 1.16-2.08) and a protective effect for higher levels of thrombospondin-2 (OR, 0.83; 95% CI, 0.74-0.94) on PAH. Both proteins tracked the development of PAH in previously healthy relatives and changes in thrombospondin-2 associated with pulmonary arterial pressure at disease onset. Integrated analysis of the plasma proteome and genome implicates two secreted matrix-binding proteins, netrin-4 and thrombospondin-2, in the pathobiology of PAH. 10.1164/rccm.202109-2106OC