1. The roles of secretory autophagy in mitochondria release via extracellular vesicles: waste disposal and food delivery?
期刊:Frontiers in cell and developmental biology
日期:2024-05-24
DOI :10.3389/fcell.2024.1392810
添加收藏
创建看单
引用
1区Q1影响因子: 10
跳转PDF
登录
英汉
2. Mesenchymal stem cell-derived extracellular vesicles accelerate diabetic wound healing by inhibiting NET-induced ferroptosis of endothelial cells.
期刊:International journal of biological sciences
日期:2024-06-17
DOI :10.7150/ijbs.97150
Impaired angiogenesis is a major factor contributing to delayed wound healing in diabetes. Dysfunctional mitochondria promote the formation of neutrophil extracellular traps (NETs), obstructing angiogenesis during wound healing. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have shown promise in promoting tissue repair and regeneration in diabetes; however, the precise pathways involved in this process remain unclear. In this study, NET-induced ferroptosis of endothelial cells (ECs) and angiogenesis were assessed in diabetic wound samples from both patients and animal models. and experiments were performed to examine the regulatory mechanisms of NETs in ECs using specific inhibitors and gene-knockout mice. MSC-EVs encapsulating dysfunctional mitochondria were used to trigger mitochondrial fusion and restore mitochondrial function in neutrophils to suppress NET formation. Angiogenesis in wound tissue was evaluated using color laser Doppler imaging and vascular density analysis. Wound healing was evaluated via macroscopic analysis and histological evaluation of the epithelial gap. NET-induced ferroptosis of ECs was validated as a crucial factor contributing to the impairment of angiogenesis in diabetic wounds. Mechanistically, NETs regulated ferroptosis by suppressing the PI3K/AKT pathway. Furthermore, MSC-EVs transferred functional mitochondria to neutrophils in wound tissue, triggered mitochondrial fusion, and restored mitochondrial function, thereby reducing NET formation. These results suggest that inhibiting NET formation and EC ferroptosis or activating the PI3K/AKT pathway can remarkably improve wound healing. In conclusion, this study reveals a novel NET-mediated pathway involved in wound healing in diabetes and suggests an effective therapeutic strategy for accelerating wound healing.
添加收藏
创建看单
引用
1区Q1影响因子: 12.5
打开PDF
登录
英汉
3. Energy metabolism as therapeutic target for aged wound repair by engineered extracellular vesicle.
期刊:Science advances
日期:2024-04-12
DOI :10.1126/sciadv.adl0372
Aging skin, vulnerable to age-related defects, is poor in wound repair. Metabolic regulation in accumulated senescent cells (SnCs) with aging is essential for tissue homeostasis, and adequate ATP is important in cell activation for aged tissue repair. Strategies for ATP metabolism intervention hold prospects for therapeutic advances. Here, we found energy metabolic changes in aging skin from patients and mice. Our data show that metformin engineered EV (Met-EV) can enhance aged mouse skin repair, as well as ameliorate cellular senescence and restore cell dysfunctions. Notably, ATP metabolism was remodeled as reduced glycolysis and enhanced OXPHOS after Met-EV treatment. We show Met-EV rescue senescence-induced mitochondria dysfunctions and mitophagy suppressions, indicating the role of Met-EV in remodeling mitochondrial functions via mitophagy for adequate ATP production in aged tissue repair. Our results reveal the mechanism for SnCs rejuvenation by EV and suggest the disturbed energy metabolism, essential in age-related defects, to be a potential therapeutic target for facilitating aged tissue repair.
添加收藏
创建看单
引用
1区Q1影响因子: 14.1
跳转PDF
登录
英汉
4. MSCs Deliver Hypoxia-Treated Mitochondria Reprogramming Acinar Metabolism to Alleviate Severe Acute Pancreatitis Injury.
Mitochondrial function impairment due to abnormal opening of the mitochondrial permeability transition pore (MPTP) is considered the central event in acute pancreatitis; however, therapeutic choices for this condition remain controversial. Mesenchymal stem cells (MSCs) are a family member of stem cells with immunomodulatory and anti-inflammatory capabilities that can mitigate damage in experimental pancreatitis. Here, it is shown that MSCs deliver hypoxia-treated functional mitochondria to damaged pancreatic acinar cells (PACs) via extracellular vesicles (EVs), which reverse the metabolic function of PACs, maintain ATP supply, and exhibit an excellent injury-inhibiting effect. Mechanistically, hypoxia inhibits superoxide accumulation in the mitochondria of MSCs and upregulates the membrane potential, which is internalized into PACs via EVs, thus, remodeling the metabolic state. In addition, cargocytes constructed via stem cell denucleation as mitochondrial vectors are shown to exert similar therapeutic effects to MSCs. These findings reveal an important mechanism underlying the role of mitochondria in MSC therapy and offer the possibility of applying mitochondrial therapy to patients with severe acute pancreatitis.
添加收藏
创建看单
引用
3区Q1影响因子: 4.9
打开PDF
登录
英汉
5. Mitochondrial-Derived Vesicles-Link to Extracellular Vesicles and Implications in Cardiovascular Disease.
期刊:International journal of molecular sciences
日期:2023-01-30
DOI :10.3390/ijms24032637
Mitochondria are dynamic organelles regulating metabolism, cell death, and energy production. Therefore, maintaining mitochondrial health is critical for cellular homeostasis. Mitophagy and mitochondrial reorganization via fission and fusion are established mechanisms for ensuring mitochondrial quality. In recent years, mitochondrial-derived vesicles (MDVs) have emerged as a novel cellular response. MDVs are shed from the mitochondrial surface and can be directed to lysosomes or peroxisomes for intracellular degradation. MDVs may contribute to cardiovascular disease (CVD) which is characterized by mitochondrial dysfunction. In addition, evidence suggests that mitochondrial content is present in extracellular vesicles (EVs). Herein, we provide an overview of the current knowledge on MDV formation and trafficking. Moreover, we review recent findings linking MDV and EV biogenesis and discuss their role in CVD. Finally, we discuss the role of vesicle-mediated mitochondrial transfer and its potential cardioprotective effects.
添加收藏
创建看单
引用
1区Q1影响因子: 14.5
跳转PDF
登录
英汉
6. Correction to "Transfer of inflammatory mitochondria via extracellular vesicles from M1 macrophages induces ferroptosis of pancreatic beta cells in acute pancreatitis".
期刊:Journal of extracellular vesicles
日期:2024-04-01
DOI :10.1002/jev2.12441
添加收藏
创建看单
引用
3区Q2影响因子: 2.9
跳转PDF
登录
英汉
7. -Derived Extracellular Vesicles-Like Nanovesicles Protect Cardiomyocytes Against Radiation Injury via Attenuating DNA Damage and Mitochondria Dysfunction.
期刊:Frontiers in cardiovascular medicine
日期:2022-04-18
DOI :10.3389/fcvm.2022.864188
Thoracic radiotherapy patients have higher risks of developing radiation-induced heart disease (RIHD). Ionizing radiation generates excessive reactive oxygens species (ROS) causing oxidative stress, while and its extract have antioxidant activity. Plant-derived extracellular vesicles (EVs) is emerging as novel therapeutic agent. Therefore, we explored the protective effects of -derived EVs-like nanovesicles (MCELNs) against RIHD. Using density gradient centrifugation, we successfully isolated MCELNs with similar shape, size, and markers as EVs. Confocal imaging revealed that rat cardiomyocytes H9C2 cells internalized PKH67 labeled MCELNs time-dependently. assay identified that MCELNs promoted cell proliferation, suppressed cell apoptosis, and alleviated the DNA damage in irradiated (16 Gy, X-ray) H9C2 cells. Moreover, elevated mitochondria ROS in irradiated H9C2 cells were scavenged by MCELNs, protecting mitochondria function with re-balanced mitochondria membrane potential. Furthermore, the phosphorylation of ROS-related proteins was recovered with increased ratios of p-AKT/AKT and p-ERK/ERK in MCELNs treated irradiated H9C2 cells. Last, intraperitoneal administration of MCELNs mitigated myocardial injury and fibrosis in a thoracic radiation mice model. Our data demonstrated the potential protective effects of MCELNs against RIHD. The MCELNs shed light on preventive regime development for radiation-related toxicity.
添加收藏
创建看单
引用
1区Q1影响因子: 11.5
英汉
8. Mitochondria-containing extracellular vesicles from mouse vs. human brain endothelial cells for ischemic stroke therapy.
期刊:Journal of controlled release : official journal of the Controlled Release Society
日期:2024-08-02
DOI :10.1016/j.jconrel.2024.07.065
Ischemic stroke-induced mitochondrial dysfunction in the blood-brain barrier-forming brain endothelial cells (BECs) results in long-term neurological dysfunction post-stroke. We previously reported data from a pilot study where intravenous administration of human BEC (hBEC)-derived mitochondria-containing extracellular vesicles (EVs) showed a potential efficacy signal in a mouse middle cerebral artery occlusion (MCAo) model of stroke. We hypothesized that EVs harvested from donor species homologous to the recipient species (e.g., mouse) may improve therapeutic efficacy, and therefore, use of mouse BEC (mBEC)-derived EVs may improve post-stroke outcomes in MCAo mice. We investigated potential differences in the mitochondria transfer of EVs derived from the same species as the recipient cell (mBEC-EVs and recipient mBECs or hBECs-EVs and recipient hBECs) vs. cross-species EVs and recipient cells (mBEC-EVs and recipient hBECs or vice versa). Our results showed that while both hBEC- and mBEC-EVs transferred EV mitochondria, mBEC-EVs outperformed hBEC-EVs in increasing ATP levels and improved recipient mBEC mitochondrial function via increasing oxygen consumption rates. mBEC-EVs significantly reduced brain infarct volume and neurological deficit scores compared to vehicle-injected MCAo mice. The superior therapeutic efficacy of mBEC-EVs in MCAo mice support the continued use of mBEC-EVs to optimize the therapeutic potential of mitochondria-containing EVs in preclinical mouse models.
添加收藏
创建看单
引用
3区Q1影响因子: 4.9
跳转PDF
登录
英汉
9. Mitochondrial Dysfunction, Oxidative Stress, and Inter-Organ Miscommunications in T2D Progression.
期刊:International journal of molecular sciences
日期:2024-01-25
DOI :10.3390/ijms25031504
Type 2 diabetes (T2D) is a heterogenous disease, and conventionally, peripheral insulin resistance (IR) was thought to precede islet β-cell dysfunction, promoting progression from prediabetes to T2D. New evidence suggests that T2D-lean individuals experience early β-cell dysfunction without significant IR. Regardless of the primary event (i.e., IR vs. β-cell dysfunction) that contributes to dysglycemia, significant early-onset oxidative damage and mitochondrial dysfunction in multiple metabolic tissues may be a driver of T2D onset and progression. Oxidative stress, defined as the generation of reactive oxygen species (ROS), is mediated by hyperglycemia alone or in combination with lipids. Physiological oxidative stress promotes inter-tissue communication, while pathological oxidative stress promotes inter-tissue mis-communication, and new evidence suggests that this is mediated via extracellular vesicles (EVs), including mitochondria containing EVs. Under metabolic-related stress conditions, EV-mediated cross-talk between β-cells and skeletal muscle likely trigger mitochondrial anomalies leading to prediabetes and T2D. This article reviews the underlying molecular mechanisms in ROS-related pathogenesis of prediabetes, including mitophagy and mitochondrial dynamics due to oxidative stress. Further, this review will describe the potential of various therapeutic avenues for attenuating oxidative damage, reversing prediabetes and preventing progression to T2D.
添加收藏
创建看单
引用
1区Q1影响因子: 22
跳转PDF
登录
英汉
10. Intracellular to Interorgan Mitochondrial Communication in Striated Muscle in Health and Disease.
期刊:Endocrine reviews
日期:2023-07-11
DOI :10.1210/endrev/bnad004
Mitochondria sense both biochemical and energetic input in addition to communicating signals regarding the energetic state of the cell. Increasingly, these signaling organelles are recognized as key for regulating different cell functions. This review summarizes recent advances in mitochondrial communication in striated muscle, with specific focus on the processes by which mitochondria communicate with each other, other organelles, and across distant organ systems. Intermitochondrial communication in striated muscle is mediated via conduction of the mitochondrial membrane potential to adjacent mitochondria, physical interactions, mitochondrial fusion or fission, and via nanotunnels, allowing for the exchange of proteins, mitochondrial DNA, nucleotides, and peptides. Within striated muscle cells, mitochondria-organelle communication can modulate overall cell function. The various mechanisms by which mitochondria communicate mitochondrial fitness to the rest of the body suggest that extracellular mitochondrial signaling is key during health and disease. Whereas mitochondria-derived vesicles might excrete mitochondria-derived endocrine compounds, stimulation of mitochondrial stress can lead to the release of fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) into the circulation to modulate whole-body physiology. Circulating mitochondrial DNA are well-known alarmins that trigger the immune system and may help to explain low-grade inflammation in various chronic diseases. Impaired mitochondrial function and communication are central in common heart and skeletal muscle pathologies, including cardiomyopathies, insulin resistance, and sarcopenia. Lastly, important new advances in research in mitochondrial endocrinology, communication, medical horizons, and translational aspects are discussed.
添加收藏
创建看单
引用
1区Q1影响因子: 12.4
英汉
11. Mitochondria break free: Mitochondria-derived vesicles in aging and associated conditions.
期刊:Ageing research reviews
日期:2024-10-19
DOI :10.1016/j.arr.2024.102549
Mitophagy is the intracellular recycling system that disposes damaged/inefficient mitochondria and allows biogenesis of new organelles to ensure mitochondrial quality is optimized. Dysfunctional mitophagy has been implicated in human aging and diseases. Multiple evolutionarily selected, redundant mechanisms of mitophagy have been identified, but their specific roles in human health and their potential exploitation as therapeutic targets are unclear. Recently, the characterization of the endosomal-lysosomal system has revealed additional mechanisms of mitophagy and mitochondrial quality control that operate via the production of mitochondria-derived vesicles (MDVs). Circulating MDVs can be isolated and characterized to provide an unprecedented opportunity to study this type of mitochondrial recycling in vivo and to relate it to human physiology and pathology. Defining the role of MDVs in human physiology, pathology, and aging is hampered by the lack of standardized methods to isolate, validate, and characterize these vesicles. Hence, some basic questions about MDVs remain unanswered. While MDVs are generated directly through the extrusion of mitochondrial membranes within the cell, a set of circulating extracellular vesicles leaking from the endosomal-lysosomal system and containing mitochondrial portions have also been identified and warrant investigation. Preliminary research indicates that MDV generation serves multiple biological roles and contributes to restoring cell homeostasis. However, studies have shown that MDVs may also be involved in pathological conditions. Therefore, further research is warranted to establish when/whether MDVs are supporting disease progression and/or are extracting damaged mitochondrial components to alleviate cellular oxidative burden and restore redox homeoastasis. This information will be relevant for exploiting these vesicles for therapeutic purpose. Herein, we provide an overview of preclinical and clinical studies on MDVs in aging and associated conditions and discuss the interplay between MDVs and some of the hallmarks of aging (mitophagy, inflammation, and proteostasis). We also outline open questions on MDV research that should be prioritized by future investigations.
添加收藏
创建看单
引用
3区Q1影响因子: 4.9
跳转PDF
登录
英汉
12. The Tricky Connection between Extracellular Vesicles and Mitochondria in Inflammatory-Related Diseases.
期刊:International journal of molecular sciences
日期:2023-05-03
DOI :10.3390/ijms24098181
Mitochondria are organelles present in almost all eukaryotic cells, where they represent the main site of energy production. Mitochondria are involved in several important cell processes, such as calcium homeostasis, OXPHOS, autophagy, and apoptosis. Moreover, they play a pivotal role also in inflammation through the inter-organelle and inter-cellular communications, mediated by the release of mitochondrial damage-associated molecular patterns (mtDAMPs). It is currently well-documented that in addition to traditional endocrine and paracrine communication, the cells converse via extracellular vesicles (EVs). These small membrane-bound particles are released from cells in the extracellular milieu under physio-pathological conditions. Importantly, EVs have gained much attention for their crucial role in inter-cellular communication, translating inflammatory signals into recipient cells. EVs cargo includes plasma membrane and endosomal proteins, but EVs also contain material from other cellular compartments, including mitochondria. Studies have shown that EVs may transport mitochondrial portions, proteins, and/or mtDAMPs to modulate the metabolic and inflammatory responses of recipient cells. Overall, the relationship between EVs and mitochondria in inflammation is an active area of research, although further studies are needed to fully understand the mechanisms involved and how they may be targeted for therapeutic purposes. Here, we have reported and discussed the latest studies focused on this fascinating and recent area of research, discussing of tricky connection between mitochondria and EVs in inflammatory-related diseases.
添加收藏
创建看单
引用
1区Q1影响因子: 12.4
跳转PDF
登录
英汉
13. Inter and Intracellular mitochondrial trafficking in health and disease.
Neurons and glia maintain central nervous system (CNS) homeostasis through diverse mechanisms of intra- and intercellular signaling. Some of these interactions include the exchange of soluble factors between cells via direct cell-to-cell contact for both short and long-distance transfer of biological materials. Transcellular transfer of mitochondria has emerged as a key example of this communication. This transcellular transfer of mitochondria are dynamically involved in the cellular and tissue response to CNS injury and play beneficial roles in recovery. This review highlights recent research addressing the cause and effect of intra- and intercellular mitochondrial transfer with a specific focus on the future of mitochondrial transplantation therapy. We believe that mitochondrial transfer plays a crucial role during bioenergetic crisis/deficit, but the quality, quantity and mode of mitochondrial transfer determines the protective capacity for the receiving cells. Mitochondrial transplantation is a new treatment paradigm and will overcome the major bottleneck of traditional approach of correcting mitochondria-related disorders.
添加收藏
创建看单
引用
1区Q1影响因子: 10.6
打开PDF
登录
英汉
14. Mitochondrial Lon-induced mtDNA leakage contributes to PD-L1-mediated immunoescape via STING-IFN signaling and extracellular vesicles.
期刊:Journal for immunotherapy of cancer
日期:2020-12-01
DOI :10.1136/jitc-2020-001372
BACKGROUND:Mitochondrial Lon is a chaperone and DNA-binding protein that functions in protein quality control and stress response pathways. The level of Lon regulates mitochondrial DNA (mtDNA) metabolism and the production of mitochondrial reactive oxygen species (ROS). However, there is little information in detail on how mitochondrial Lon regulates ROS-dependent cancer immunoescape through mtDNA metabolism in the tumor microenvironment (TME). METHODS:We explored the understanding of the intricate interplay between mitochondria and the innate immune response in the inflammatory TME. RESULTS:We found that oxidized mtDNA is released into the cytosol when Lon is overexpressed and then it induces interferon (IFN) signaling via cGAS-STING-TBK1, which upregulates PD-L1 and IDO-1 expression to inhibit T-cell activation. Unexpectedly, upregulation of Lon also induces the secretion of extracellular vehicles (EVs), which carry mtDNA and PD-L1. Lon-induced EVs further induce the production of IFN and IL-6 from macrophages, which attenuates T-cell immunity in the TME. CONCLUSIONS:The levels of mtDNA and PD-L1 in EVs in patients with oral cancer function as a potential diagnostic biomarker for anti-PD-L1 immunotherapy. Our studies provide an insight into the immunosuppression on mitochondrial stress and suggest a therapeutic synergy between anti-inflammation therapy and immunotherapy in cancer.
添加收藏
创建看单
引用
1区Q1影响因子: 13.3
打开PDF
登录
英汉
15. AdMSC-derived exosomes alleviate acute lung injury via transferring mitochondrial component to improve homeostasis of alveolar macrophages.
期刊:Theranostics
日期:2022-03-21
DOI :10.7150/thno.69533
Aberrant activation of macrophages with mitochondria dismiss was proved to be associated with pathogenesis of ALI (acute lung injury). Exosomes from adipose-derived mesenchymal stem cells (AdMSC-Exos) have been distinguished by their low immunogenicity, lack of tumorigenicity, and high clinical safety, but their role in treating ALI and the mechanism involved need to be defined. In this study, we sought to investigate whether the mitochondrial donation from AdMSC-Exos provides profound protection against LPS-induced ALI in mice, accompanied by improvement of macrophage mitochondrial function. C57BL/6 mice were orotracheally instilled with LPS (1 mg/kg). AdMSC-Exos were administered via the tail vein 4 h after LPS inhalation. Flow cytometry, H&E, Quantitative Real-Time PCR, immunofluorescence (IF), confocal microscopy imaging was conducted to investigate lung tissue inflammation and macrophage mitochondrial function. And further observe the transfer of exosomes and the effect on mitochondrial function of MH-S cells through experiments. AdMSC-Exos can transfer the stem cell-derived mitochondria components to alveolar macrophages in a dose-dependent manner. Likely through complementing the damaged mitochondria, AdMSC-Exos exhibited the ability to elevate the level of mtDNA, mitochondrial membrane potential (MMP), OXPHOS activity and ATP generation, while reliving mROS stress in LPS-challenged macrophages. Restoring mitochondrial integrity via AdMSC-Exos treatment enabled macrophages shifting to anti-inflammatory phenotype, as featured with the down-regulation of IL-1β, TNF-α and iNOS secretion and increase in production of anti-inflammatory cytokines IL-10 and Arg-1. As we depleted alveolar macrophages using clodronate liposomes, the protective role for AdMSC-Exos was largely abrogated. AdMSC-Exos can effectively donate mitochondria component improved macrophages mitochondrial integrity and oxidative phosphorylation level, leading to the resumption of metabolic and immune homeostasis of airway macrophages and mitigating lung inflammatory pathology.
添加收藏
创建看单
引用
1区Q1影响因子: 15.7
打开PDF
登录
英汉
16. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs.
作者:Phinney Donald G , Di Giuseppe Michelangelo , Njah Joel , Sala Ernest , Shiva Sruti , St Croix Claudette M , Stolz Donna B , Watkins Simon C , Di Y Peter , Leikauf George D , Kolls Jay , Riches David W H , Deiuliis Giuseppe , Kaminski Naftali , Boregowda Siddaraju V , McKenna David H , Ortiz Luis A
期刊:Nature communications
日期:2015-10-07
DOI :10.1038/ncomms9472
Mesenchymal stem cells (MSCs) and macrophages are fundamental components of the stem cell niche and function coordinately to regulate haematopoietic stem cell self-renewal and mobilization. Recent studies indicate that mitophagy and healthy mitochondrial function are critical to the survival of stem cells, but how these processes are regulated in MSCs is unknown. Here we show that MSCs manage intracellular oxidative stress by targeting depolarized mitochondria to the plasma membrane via arrestin domain-containing protein 1-mediated microvesicles. The vesicles are then engulfed and re-utilized via a process involving fusion by macrophages, resulting in enhanced bioenergetics. Furthermore, we show that MSCs simultaneously shed micro RNA-containing exosomes that inhibit macrophage activation by suppressing Toll-like receptor signalling, thereby de-sensitizing macrophages to the ingested mitochondria. Collectively, these studies mechanistically link mitophagy and MSC survival with macrophage function, thereby providing a physiologically relevant context for the innate immunomodulatory activity of MSCs.
添加收藏
创建看单
引用
1区Q1影响因子: 12.4
英汉
17. Mitochondrial Extracellular Vesicles (mitoEVs): Emerging mediators of cell-to-cell communication in health, aging and age-related diseases.
期刊:Ageing research reviews
日期:2024-10-05
DOI :10.1016/j.arr.2024.102522
Mitochondria are metabolic and signalling hubs that integrate a plethora of interconnected processes to maintain cell homeostasis. They are also dormant mediators of inflammation and cell death, and with aging damages affecting mitochondria gradually accumulate, resulting in the manifestation of age-associated disorders. In addition to coordinate multiple intracellular functions, mitochondria mediate intercellular and inter-organ cross talk in different physiological and stress conditions. To fulfil this task, mitochondrial signalling has evolved distinct and complex conventional and unconventional routes of horizontal/vertical mitochondrial transfer. In this regard, great interest has been focused on the ability of extracellular vesicles (EVs), such as exosomes and microvesicles, to carry selected mitochondrial cargoes to target cells, in response to internal and external cues. Over the past years, the field of mitochondrial EVs (mitoEVs) has grown exponentially, revealing unexpected heterogeneity of these structures associated with an ever-expanding mitochondrial function, though the full extent of the underlying mechanisms is far from being elucidated. Therefore, emerging subsets of EVs encompass exophers, migrasomes, mitophers, mitovesicles, and mitolysosomes that can act locally or over long-distances to restore mitochondrial homeostasis and cell functionality, or to amplify disease. This review provides a comprehensive overview of our current understanding of the biology and trafficking of MitoEVs in different physiological and pathological conditions. Additionally, a specific focus on the role of mitoEVs in aging and the onset and progression of different age-related diseases is discussed.
添加收藏
创建看单
引用
1区Q1影响因子: 15.7
跳转PDF
登录
英汉
18. Neutrophils restrain sepsis associated coagulopathy via extracellular vesicles carrying superoxide dismutase 2 in a murine model of lipopolysaccharide induced sepsis.
期刊:Nature communications
日期:2022-08-06
DOI :10.1038/s41467-022-32325-w
Disseminated intravascular coagulation (DIC) is a complication of sepsis currently lacking effective therapeutic options. Excessive inflammatory responses are emerging triggers of coagulopathy during sepsis, but the interplay between the immune system and coagulation are not fully understood. Here we utilize a murine model of intraperitoneal lipopolysaccharide stimulation and show neutrophils in the circulation mitigate the occurrence of DIC, preventing subsequent septic death. We show circulating neutrophils release extracellular vesicles containing mitochondria, which contain superoxide dismutase 2 upon exposure to lipopolysaccharide. Extracellular superoxide dismutase 2 is necessary to induce neutrophils' antithrombotic function by preventing endothelial reactive oxygen species accumulation and alleviating endothelial dysfunction. Intervening endothelial reactive oxygen species accumulation by antioxidants significantly ameliorates disseminated intravascular coagulation improving survival in this murine model of lipopolysaccharide challenge. These findings reveal an interaction between neutrophils and vascular endothelium which critically regulate coagulation in a model of sepsis and may have potential implications for the management of disseminated intravascular coagulation.
添加收藏
创建看单
引用
1区Q1影响因子: 11.5
英汉
19. Delivery of mitochondria via extracellular vesicles - A new horizon in drug delivery.
期刊:Journal of controlled release : official journal of the Controlled Release Society
日期:2022-02-04
DOI :10.1016/j.jconrel.2022.01.045
The field of drug delivery has made tremendous advances in increasing the therapeutic potential of a variety of drug candidates spanning from small molecules to large molecular biologics such as nucleic acids, proteins, etc. Extracellular vesicles (EVs) are mediators of intercellular communication and carry a rich cocktail of innate cargo including lipids, proteins and nucleic acids. EVs are a promising class of natural, cell-derived carriers for drug delivery. EVs of particle diameters <200 nm are referred to as small EVs (sEVs) and medium-to-larger particles of diameters >200 nm are referred to as m/lEVs. The m/lEVs naturally incorporate mitochondria during their biogenesis. In this Oration, I will discuss the potential of m/lEVs as carriers for the delivery of healthy and functional mitochondria. Mitochondrial damage and dysfunction play a causal role in multiple pathologies such as neurodegenerative diseases, cardiovascular and metabolic diseases-suggesting that m/lEV-mediated mitochondria delivery can be of broad biomedical significance. A major advantage of harnessing m/lEVs is that the delivered mitochondria are capable of using endogenous mechanisms for repairing the cellular damage. I will highlight the delivery potential of m/lEVs based on the studies we have conducted so far and discuss unaddressed issues towards their development as a novel class of mitochondria carriers.
添加收藏
创建看单
引用
1区Q1影响因子: 30.9
打开PDF
登录
英汉
20. Ejection of damaged mitochondria and their removal by macrophages ensure efficient thermogenesis in brown adipose tissue.
期刊:Cell metabolism
日期:2022-03-18
DOI :10.1016/j.cmet.2022.02.016
Recent findings have demonstrated that mitochondria can be transferred between cells to control metabolic homeostasis. Although the mitochondria of brown adipocytes comprise a large component of the cell volume and undergo reorganization to sustain thermogenesis, it remains unclear whether an intercellular mitochondrial transfer occurs in brown adipose tissue (BAT) and regulates adaptive thermogenesis. Herein, we demonstrated that thermogenically stressed brown adipocytes release extracellular vesicles (EVs) that contain oxidatively damaged mitochondrial parts to avoid failure of the thermogenic program. When re-uptaken by parental brown adipocytes, mitochondria-derived EVs reduced peroxisome proliferator-activated receptor-γ signaling and the levels of mitochondrial proteins, including UCP1. Their removal via the phagocytic activity of BAT-resident macrophages is instrumental in preserving BAT physiology. Depletion of macrophages in vivo causes the abnormal accumulation of extracellular mitochondrial vesicles in BAT, impairing the thermogenic response to cold exposure. These findings reveal a homeostatic role of tissue-resident macrophages in the mitochondrial quality control of BAT.
添加收藏
创建看单
引用
1区Q1影响因子: 15.7
跳转PDF
登录
英汉
21. Mitochondria are secreted in extracellular vesicles when lysosomal function is impaired.
期刊:Nature communications
日期:2023-08-18
DOI :10.1038/s41467-023-40680-5
Mitochondrial quality control is critical for cardiac homeostasis as these organelles are responsible for generating most of the energy needed to sustain contraction. Dysfunctional mitochondria are normally degraded via intracellular degradation pathways that converge on the lysosome. Here, we identified an alternative mechanism to eliminate mitochondria when lysosomal function is compromised. We show that lysosomal inhibition leads to increased secretion of mitochondria in large extracellular vesicles (EVs). The EVs are produced in multivesicular bodies, and their release is independent of autophagy. Deletion of the small GTPase Rab7 in cells or adult mouse heart leads to increased secretion of EVs containing ubiquitinated cargos, including intact mitochondria. The secreted EVs are captured by macrophages without activating inflammation. Hearts from aged mice or Danon disease patients have increased levels of secreted EVs containing mitochondria indicating activation of vesicular release during cardiac pathophysiology. Overall, these findings establish that mitochondria are eliminated in large EVs through the endosomal pathway when lysosomal degradation is inhibited.
期刊:Journal of controlled release : official journal of the Controlled Release Society
日期:2023-01-18
DOI :10.1016/j.jconrel.2023.01.025
Ischemic stroke causes brain endothelial cell (BEC) death and damages tight junction integrity of the blood-brain barrier (BBB). We harnessed the innate mitochondrial load of BEC-derived extracellular vesicles (EVs) and utilized mixtures of EV/exogenous 27 kDa heat shock protein (HSP27) as a one-two punch strategy to increase BEC survival (via EV mitochondria) and preserve their tight junction integrity (via HSP27 effects). We demonstrated that the medium-to-large (m/lEV) but not small EVs (sEV) transferred their mitochondrial load, that subsequently colocalized with the mitochondrial network of the recipient primary human BECs. Recipient BECs treated with m/lEVs showed increased relative ATP levels and mitochondrial function. To determine if the m/lEV-meditated increase in recipient BEC ATP levels was associated with m/lEV mitochondria, we isolated m/lEVs from donor BECs pre-treated with oligomycin A (OGM, mitochondria electron transport complex V inhibitor), referred to as OGM-m/lEVs. BECs treated with naïve m/lEVs showed a significant increase in ATP levels compared to untreated OGD cells, OGM-m/lEVs treated BECs showed a loss of ATP levels suggesting that the m/lEV-mediated increase in ATP levels is likely a function of their innate mitochondrial load. In contrast, sEV-mediated ATP increases were not affected by inhibition of mitochondrial function in the donor BECs. Intravenously administered m/lEVs showed a reduction in brain infarct sizes compared to vehicle-injected mice in a mouse middle cerebral artery occlusion model of ischemic stroke. We formulated binary mixtures of human recombinant HSP27 protein with EVs: EV/HSP27 and ternary mixtures of HSP27 and EVs with a cationic polymer, poly (ethylene glycol)-b-poly (diethyltriamine): (PEG-DET/HSP27)/EV. (PEG-DET/HSP27)/EV and EV/HSP27 mixtures decreased the paracellular permeability of small and large molecular mass fluorescent tracers in oxygen glucose-deprived primary human BECs. This one-two punch approach to increase BEC metabolic function and tight junction integrity may be a promising strategy for BBB protection and prevention of long-term neurological dysfunction post-ischemic stroke.
添加收藏
创建看单
引用
1区Q1影响因子: 14.5
跳转PDF
登录
英汉
23. Transfer of inflammatory mitochondria via extracellular vesicles from M1 macrophages induces ferroptosis of pancreatic beta cells in acute pancreatitis.
期刊:Journal of extracellular vesicles
日期:2024-02-01
DOI :10.1002/jev2.12410
Extracellular vesicles (EVs) exert a significant influence not only on the pathogenesis of diseases but also on their therapeutic interventions, contingent upon the variances observed in their originating cells. Mitochondria can be transported between cells via EVs to promote pathological changes. In this study, we found that EVs derived from M1 macrophages (M1-EVs), which encapsulate inflammatory mitochondria, can penetrate pancreatic beta cells. Inflammatory mitochondria fuse with the mitochondria of pancreatic beta cells, resulting in lipid peroxidation and mitochondrial disruption. Furthermore, fragments of mitochondrial DNA (mtDNA) are released into the cytosol, activating the STING pathway and ultimately inducing apoptosis. The potential of adipose-derived stem cell (ADSC)-released EVs in suppressing M1 macrophage reactions shows promise. Subsequently, ADSC-EVs were utilized and modified with an F4/80 antibody to specifically target macrophages, aiming to treat ferroptosis of pancreatic beta cells in vivo. In summary, our data further demonstrate that EVs secreted from M1 phenotype macrophages play major roles in beta cell ferroptosis, and the modified ADSC-EVs exhibit considerable potential for development as a vehicle for targeted delivery to macrophages.
添加收藏
创建看单
引用
1区Q1影响因子: 7.2
跳转PDF
登录
英汉
24. Neural stem cells traffic functional mitochondria via extracellular vesicles.
期刊:PLoS biology
日期:2021-04-07
DOI :10.1371/journal.pbio.3001166
Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho0 cells rescued mitochondrial function and increased Rho0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.
添加收藏
创建看单
引用
1区Q1影响因子: 22.9
打开PDF
登录
英汉
25. Activated Drp1 regulates p62-mediated autophagic flux and aggravates inflammation in cerebral ischemia-reperfusion via the ROS-RIP1/RIP3-exosome axis.
期刊:Military Medical Research
日期:2022-05-27
DOI :10.1186/s40779-022-00383-2
BACKGROUND:Cerebral ischemia-reperfusion injury (CIRI) refers to a secondary brain injury that can occur when the blood supply to the ischemic brain tissue is restored. However, the mechanism underlying such injury remains elusive. METHODS:The 150 male C57 mice underwent middle cerebral artery occlusion (MCAO) for 1 h and reperfusion for 24 h, Among them, 50 MCAO mice were further treated with Mitochondrial division inhibitor 1 (Mdivi-1) and 50 MCAO mice were further treated with N-acetylcysteine (NAC). SH-SY5Y cells were cultured in a low-glucose culture medium for 4 h under hypoxic conditions and then transferred to normal conditions for 12 h. Then, cerebral blood flow, mitochondrial structure, mitochondrial DNA (mtDNA) copy number, intracellular and mitochondrial reactive oxygen species (ROS), autophagic flux, aggresome and exosome expression profiles, cardiac tissue structure, mitochondrial length and cristae density, mtDNA and ROS content, as well as the expression of Drp1-Ser616/Drp1, RIP1/RIP3, LC3 II/LC3 I, TNF-α, IL-1β, etc., were detected under normal or Drp1 interference conditions. RESULTS:The mtDNA content, ROS levels, and Drp1-Ser616/Drp1 were elevated by 2.2, 1.7 and 2.7 times after CIRI (P < 0.05). However, the high cytoplasmic LC3 II/I ratio and increased aggregation of p62 could be reversed by 44% and 88% by Drp1 short hairpin RNA (shRNA) (P < 0.05). The low fluorescence intensity of autophagic flux and the increased phosphorylation of RIP3 induced by CIRI could be attenuated by ROS scavenger, NAC (P < 0.05). RIP1/RIP3 inhibitor Necrostatin-1 (Nec-1) restored 75% to a low LC3 II/LC3 I ratio and enhanced 2 times to a high RFP-LC3 after Drp1 activation (P < 0.05). In addition, although CIRI-induced ROS production caused no considerable accumulation of autophagosomes (P > 0.05), it increased the packaging and extracellular secretion of exosomes containing p62 by 4 - 5 times, which could be decreased by Mdivi-1, Drp1 shRNA, and Nec-1 (P < 0.05). Furthermore, TNF-α and IL-1β increased in CIRI-derived exosomes could increase RIP3 phosphorylation in normal or oxygen-glucose deprivation/reoxygenation (OGD/R) conditions (P < 0.05). CONCLUSIONS:CIRI activated Drp1 and accelerated the p62-mediated formation of autophagosomes while inhibiting the transition of autophagosomes to autolysosomes via the RIP1/RIP3 pathway activation. Undegraded autophagosomes were secreted extracellularly in the form of exosomes, leading to inflammatory cascades that further damaged mitochondria, resulting in excessive ROS generation and the blockage of autophagosome degradation, triggering a vicious cycle.