logo logo
CBF-dependent and CBF-independent regulatory pathways contribute to the differences in freezing tolerance and cold-regulated gene expression of two Arabidopsis ecotypes locally adapted to sites in Sweden and Italy. Park Sunchung,Gilmour Sarah J,Grumet Rebecca,Thomashow Michael F PloS one Arabidopsis thaliana (Arabidopsis) increases in freezing tolerance in response to low nonfreezing temperatures, a phenomenon known as cold acclimation. The CBF regulatory pathway, which contributes to cold acclimation, includes three genes-CBF1, CBF2 and CBF3-encoding closely-related transcription factors that regulate the expression of more than 100 genes-the CBF regulon-that impart freezing tolerance. Here we compare the CBF pathways of two Arabidopsis ecotypes collected from sites in Sweden (SW) and Italy (IT). Previous studies showed that the SW ecotype was more freezing tolerant than the IT ecotype and that the IT ecotype had a nonfunctional CBF2 gene. Here we present results establishing that the difference in CBF2 alleles contributes to the difference in freezing tolerance between the two ecotypes. However, other differences in the CBF pathway as well as CBF-independent pathways contribute the large majority of the difference in freezing tolerance between the two ecotypes. The results also provided evidence that most cold-induced CBF regulon genes in both the SW and IT ecotypes are coregulated by CBF-independent pathways. Additional analysis comparing our results with those published by others examining the Col-0 accession resulted in the identification of 44 CBF regulon genes that were conserved among the three accessions suggesting that they likely have important functions in life at low temperature. The comparison further supported the conclusion that the CBF pathway can account for a large portion of the increase in freezing tolerance that occurs with cold acclimation in a given accession, but that CBF-independent pathways can also make a major contribution. 10.1371/journal.pone.0207723
A cold-induced pectin methyl-esterase inhibitor gene contributes negatively to freezing tolerance but positively to salt tolerance in Arabidopsis. Chen Jian,Chen Xuehui,Zhang Qingfeng,Zhang Yidan,Ou Xiangli,An Lizhe,Feng Huyuan,Zhao Zhiguang Journal of plant physiology Plant pectin methyl-esterase (PME) and PME inhibitor (PMEI) belong to large gene families whose members are proposed to be widely involved in growth, development, and stress responses; however, the biological functions of most PMEs and PMEIs have not been characterized. In this study, we studied the roles of CbPMEI1, a cold-induced pectin methyl-esterase inhibitor (PMEI) gene from Chorispora bungeana, under freezing and salt stress. The putative CbPMEI1 peptide shares highest similarity (83%) with AT5G62360 (PMEI13) of Arabidopsis. Overexpression of either CbPMEI1 or PMEI13 in Arabidopsis decreased tissue PME activity and enhanced the degree of methoxylation of cell wall pectins, indicating that both genes encode functional PMEIs. CbPMEI1 and PMEI13 were induced by cold but repressed by salt stress and abscisic acid, suggesting distinct roles of the genes in freezing and salt stress tolerance. Interestingly, transgenic Arabidopsis plants overexpressing CbPMEI1 or PMEI13 showed decreased freezing tolerance, as indicated by survival and electrolyte leakage assays. On the other hand, the salt tolerance of transgenic plants was increased, showing higher rates of germination, root growth, and survival under salinity conditions as compared with non-transgenic wild-type plants. Although the transgenic plants were freezing-sensitive, they showed longer roots than wild-type plants under cold conditions, suggesting a role of PMEs in balancing the trade-off between freezing tolerance and growth. Thus, our study indicates that CbPMEI1 and PMEI13 are involved in root growth regulation under cold and salt stresses, and suggests that PMEIs may be potential targets for genetic engineering aimed to improve fitness of plants under stress conditions. 10.1016/j.jplph.2018.01.003
ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation. Bolt Sylvia,Zuther Ellen,Zintl Stefanie,Hincha Dirk K,Schmülling Thomas Plant, cell & environment Understanding the response to cold temperature stress is relevant for both basic biology and application. Here we report on ERF105, which is a novel cold-regulated transcription factor gene of Arabidopsis that makes a significant contribution to freezing tolerance and cold acclimation. The expression of cold-responsive genes in erf105 mutants suggests that its action is linked to the CBF regulon mediating cold responses. 10.1111/pce.12838
Downregulation of three novel candidate genes is important for freezing tolerance of field and laboratory cold acclimated barley. Fiust Anna,Rapacz Marcin Journal of plant physiology Diversity arrays technology (DArT) marker sequences for barley were used for identifying new potential candidate genes for freezing tolerance (FT). We used quantitative trait loci (QTL) genetic linkage maps for FT and photosynthetic acclimation to cold for six- and two-row barley populations, and a set of 20 DArT markers obtained using the association mapping of parameters for photosynthetic acclimation to low temperatures in barley for the bioinformatics analyses. Several nucleotide and amino acid sequence, annotation databases and associated algorithms were used to identify the similarities of six of the marker sequences to potential genes involved in plant low temperature response. Gene ontology (GO) annotations based on similarities to database sequences were assigned to these marker sequences, and indicated potential involvement in signal transduction pathways in response to stress factors and epigenetic processes, as well as auxin transport mechanisms. Furthermore, relative gene expressions for three of six of new identified genes (Hv.ATPase, Hv.DDM1, and Hv.BIG) were assessed within four barley genotypes of different FT. A physiological assessment of FT was conducted based on plant survival rates in two field-laboratory and one laboratory experiments. The results suggested that plant survival rate after freezing but not the degree of freezing-induced leaf damage between the tested accessions can be correlated with the degree of low-temperature downregulation of the studied candidate genes, which encoded proteins involved in the control of plant growth and development. Additionally, candidate genes for qRT-PCR suitable for the analysis of cold acclimation response in barley were suggested after validation. 10.1016/j.jplph.2019.153049
Hv-CBF2A overexpression in barley accelerates COR gene transcript accumulation and acquisition of freezing tolerance during cold acclimation. Jeknić Zoran,Pillman Katherine A,Dhillon Taniya,Skinner Jeffrey S,Veisz Ottó,Cuesta-Marcos Alfonso,Hayes Patrick M,Jacobs Andrew K,Chen Tony H H,Stockinger Eric J Plant molecular biology C-Repeat Binding Factors (CBFs) are DNA-binding transcriptional activators of gene pathways imparting freezing tolerance. Poaceae contain three CBF subfamilies, two of which, HvCBF3/CBFIII and HvCBF4/CBFIV, are unique to this taxon. To gain mechanistic insight into HvCBF4/CBFIV CBFs we overexpressed Hv-CBF2A in spring barley (Hordeum vulgare) cultivar 'Golden Promise'. The Hv-CBF2A overexpressing lines exhibited stunted growth, poor yield, and greater freezing tolerance compared to non-transformed 'Golden Promise'. Differences in freezing tolerance were apparent only upon cold acclimation. During cold acclimation freezing tolerance of the Hv-CBF2A overexpressing lines increased more rapidly than that of 'Golden Promise' and paralleled the freezing tolerance of the winter hardy barley 'Dicktoo'. Transcript levels of candidate CBF target genes, COR14B and DHN5 were increased in the overexpressor lines at warm temperatures, and at cold temperatures they accumulated to much higher levels in the Hv-CBF2A overexpressors than in 'Golden Promise'. Hv-CBF2A overexpression also increased transcript levels of other CBF genes at FROST RESISTANCE-H2-H2 (FR-H2) possessing CRT/DRE sites in their upstream regions, the most notable of which was CBF12. CBF12 transcript levels exhibited a relatively constant incremental increase above levels in 'Golden Promise' both at warm and cold. These data indicate that Hv-CBF2A activates target genes at warm temperatures and that transcript accumulation for some of these targets is greatly enhanced by cold temperatures. 10.1007/s11103-013-0119-z
Comparative analysis of the cold acclimation and freezing tolerance capacities of seven diploid Brachypodium distachyon accessions. Colton-Gagnon Katia,Ali-Benali Mohamed Ali,Mayer Boris F,Dionne Rachel,Bertrand Annick,Do Carmo Sonia,Charron Jean-Benoit Annals of botany BACKGROUND AND AIMS:Cold is a major constraint for cereal cultivation under temperate climates. Winter-hardy plants interpret seasonal changes and can acquire the ability to resist sub-zero temperatures. This cold acclimation process is associated with physiological, biochemical and molecular alterations in cereals. Brachypodium distachyon is considered a powerful model system to study the response of temperate cereals to adverse environmental conditions. To date, little is known about the cold acclimation and freezing tolerance capacities of Brachypodium. The main objective of this study was to evaluate the cold hardiness of seven diploid Brachypodium accessions. METHODS:An integrated approach, involving monitoring of phenological indicators along with expression profiling of the major vernalization regulator VRN1 orthologue, was followed. In parallel, soluble sugars and proline contents were determined along with expression profiles of two COR genes in plants exposed to low temperatures. Finally, whole-plant freezing tests were performed to evaluate the freezing tolerance capacity of Brachypodium. KEY RESULTS:Cold treatment accelerated the transition from the vegetative to the reproductive phase in all diploid Brachypodium accessions tested. In addition, low temperature exposure triggered the gradual accumulation of BradiVRN1 transcripts in all accessions tested. These accessions exhibited a clear cold acclimation response by progressively accumulating proline, sugars and COR gene transcripts. However, whole-plant freezing tests revealed that these seven diploid accessions only have a limited capacity to develop freezing tolerance when compared with winter varieties of temperate cereals such as wheat and barley. Furthermore, little difference in terms of survival was observed among the accessions tested despite their previous classification as either spring or winter genotypes. CONCLUSIONS:This study is the first to characterize the freezing tolerance capacities of B. distachyon and provides strong evidence that some diploid accessions such as Bd21 have a facultative growth habit. 10.1093/aob/mct283
The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation. Catalá Rafael,López-Cobollo Rosa,Mar Castellano M,Angosto Trinidad,Alonso José M,Ecker Joseph R,Salinas Julio The Plant cell In plants, the expression of 14-3-3 genes reacts to various adverse environmental conditions, including cold, high salt, and drought. Although these results suggest that 14-3-3 proteins have the potential to regulate plant responses to abiotic stresses, their role in such responses remains poorly understood. Previously, we showed that the RARE COLD INDUCIBLE 1A (RCI1A) gene encodes the 14-3-3 psi isoform. Here, we present genetic and molecular evidence implicating RCI1A in the response to low temperature. Our results demonstrate that RCI1A functions as a negative regulator of constitutive freezing tolerance and cold acclimation in Arabidopsis thaliana by controlling cold-induced gene expression. Interestingly, this control is partially performed through an ethylene (ET)-dependent pathway involving physical interaction with different ACC SYNTHASE (ACS) isoforms and a decreased ACS stability. We show that, consequently, RCI1A restrains ET biosynthesis, contributing to establish adequate levels of this hormone in Arabidopsis under both standard and low-temperature conditions. We further show that these levels are required to promote proper cold-induced gene expression and freezing tolerance before and after cold acclimation. All these data indicate that RCI1A connects the low-temperature response with ET biosynthesis to modulate constitutive freezing tolerance and cold acclimation in Arabidopsis. 10.1105/tpc.114.127605
Mutational Evidence for the Critical Role of CBF Transcription Factors in Cold Acclimation in Arabidopsis. Zhao Chunzhao,Zhang Zhengjing,Xie Shaojun,Si Tong,Li Yuanya,Zhu Jian-Kang Plant physiology The three tandemly arranged CBF genes, CBF1, CBF2, and CBF3, are involved in cold acclimation. Due to the lack of stable loss-of-function Arabidopsis (Arabidopsis thaliana) mutants deficient in all three CBF genes, it is still unclear whether the CBF genes are essential for freezing tolerance and whether they may have other functions besides cold acclimation. In this study, we used the CRISPR/Cas9 system to generate cbf single, double, and triple mutants. Compared to the wild type, the cbf triple mutants are extremely sensitive to freezing after cold acclimation, demonstrating that the three CBF genes are essential for cold acclimation. Our results show that the three CBF genes also contribute to basal freezing tolerance. Unexpectedly, we found that the cbf triple mutants are defective in seedling development and salt stress tolerance. Transcript profiling revealed that the CBF genes regulate 414 cold-responsive (COR) genes, of which 346 are CBF-activated genes and 68 are CBF-repressed genes. The analysis suggested that CBF proteins are extensively involved in the regulation of carbohydrate and lipid metabolism, cell wall modification, and gene transcription. Interestingly, like the triple mutants, cbf2 cbf3 double mutants are more sensitive to freezing after cold acclimation compared to the wild type, but cbf1 cbf3 double mutants are more resistant, suggesting that CBF2 is more important than CBF1 and CBF3 in cold acclimation-dependent freezing tolerance. Our results not only demonstrate that the three CBF genes together are required for cold acclimation and freezing tolerance, but also reveal that they are important for salt tolerance and seedling development. 10.1104/pp.16.00533
Cold acclimation-induced freezing tolerance of Medicago truncatula seedlings is negatively regulated by ethylene. Zhao Mingui,Liu Wenjing,Xia Xiuzhi,Wang Tianzuo,Zhang Wen-Hao Physiologia plantarum To evaluate the role of ethylene in cold acclimation and cold stress, freezing tolerance and characteristics associated with cold acclimation were investigated using legume model plant Medicago truncatula Gaertn Jemalong A17. There was a rapid suppression of ethylene production during cold acclimation in A17 plants. Ethylene level was negatively correlated with freezing tolerance as inhibition of ethylene biosynthesis by inhibitors of ethylene biosynthesis enhanced freezing tolerance, while exogenous application of ethylene reduced cold acclimation-induced freezing tolerance. The involvement of ethylene signaling in modulation of freezing tolerance and cold acclimation was further studied using ethylene-insensitive mutant sickle skl. Although skl mutant was more tolerant to freezing than its wild-type counterpart A17 plants, cold acclimation enhanced freezing tolerance in 17 plants, but not in skl mutant. Expression of several ethylene response genes including EIN3, EIN3/EIL and ERFs was suppressed in skl mutant compared to A17 plants under non-cold-acclimated conditions. Cold acclimation downregulated expression of EIN3, EIN3/EIL and ERFs in A17 plants, while expression patterns of these genes were relatively constant in skl mutant during cold acclimation. Cold acclimation-induced increases in transcription of MtCBFs and MtCAS15 were suppressed in skl mutant compared with A17 plants. These results suggest that MtSKL1 is required for perception of the change of ethylene level in M. truncatula plants for the full development of the cold acclimation response by suppressing expression of MtEIN3 and MtEIN3/EIL1, which in turn downregulates expression of MtERFs, leading to the enhanced tolerance of M. truncatula to freezing by upregulating MtCBFs and MtCAS15. 10.1111/ppl.12161
Natural Variation in Freezing Tolerance and Cold Acclimation Response in Arabidopsis thaliana and Related Species. Zuther Ellen,Lee Yang Ping,Erban Alexander,Kopka Joachim,Hincha Dirk K Advances in experimental medicine and biology During low-temperature exposure, temperate plant species increase their freezing tolerance in a process termed cold acclimation. The molecular mechanisms involved in cold acclimation have been mostly investigated in Arabidopsis thaliana. In addition, other Brassicaceae species related to A. thaliana have been employed in recent years to study plant stress responses on a phylogenetically broader basis and in some cases with extremophile species with a much higher stress tolerance. In this paper, we briefly summarize cold acclimation responses in A. thaliana and current knowledge about cold acclimation in A. thaliana relatives with special emphasis on Eutrema salsugineum and two closely related Thellungiella species. We then present a transcriptomic and metabolomic analysis of cold acclimation in five A. thaliana and two E. salsugineum accessions that differ widely in their freezing tolerance. Differences in the cold responses of the two species are discussed. 10.1007/978-981-13-1244-1_5
Cold acclimation in warmer extended autumns impairs freezing tolerance of perennial ryegrass (Lolium perenne) and timothy (Phleum pratense). Dalmannsdottir Sigridur,Jørgensen Marit,Rapacz Marcin,Østrem Liv,Larsen Arild,Rødven Rolf,Rognli Odd Arne Physiologia plantarum The effect of variable autumn temperatures in combination with decreasing irradiance and daylength on photosynthesis, growth cessation and freezing tolerance was investigated in northern- and southern-adapted populations of perennial ryegrass (Lolium perenne) and timothy (Phleum pratense) intended for use in regions at northern high latitudes. Plants were subjected to three different acclimation temperatures; 12, 6 and 9/3°C (day/night) for 4 weeks, followed by 1 week of cold acclimation at 2°C under natural light conditions. This experimental setup was repeated at three different periods during autumn with decreasing sums of irradiance and daylengths. Photoacclimation, leaf elongation and freezing tolerance were studied. The results showed that plants cold acclimated during the period with lowest irradiance and shortest day had lowest freezing tolerance, lowest photosynthetic activity, longest leaves and least biomass production. Higher acclimation temperature (12°C) resulted in lower freezing tolerance, lower photosynthetic activity, faster leaf elongation rate and higher biomass compared with the other temperatures. Photochemical mechanisms were predominant in photoacclimation. The northern-adapted populations had a better freezing tolerance than the southern-adapted except when grown during the late autumn period and at the highest temperature; then there were no differences between the populations. Our results indicate that the projected climate change in the north may reduce freezing tolerance in grasses as acclimation will take place at higher temperatures and shorter daylengths with lower irradiance. 10.1111/ppl.12548
Effect of photoperiod prior to cold acclimation on freezing tolerance and carbohydrate metabolism in alfalfa (Medicago sativa L.). Bertrand Annick,Bipfubusa Marie,Claessens Annie,Rocher Solen,Castonguay Yves Plant science : an international journal of experimental plant biology Cold acclimation proceeds sequentially in response to decreases in photoperiod and temperature. This study aimed at assessing the impact of photoperiod prior to cold acclimation on freezing tolerance and related biochemical and molecular responses in two alfalfa cultivars. The fall dormant cultivar Evolution and semi-dormant cultivar 6010 were grown in growth chambers under different photoperiods (8, 10, 12, 14 or 16h) prior to cold acclimation. Freezing tolerance was evaluated as well as carbohydrate concentrations, levels of transcripts encoding enzymes of carbohydrate metabolism as well as a K-3dehydrin, before and after cold acclimation. The fall dormant cultivar Evolution had a better freezing tolerance than the semi-dormant cultivar 6010. The effect of photoperiod prior to cold acclimation on the level of freezing tolerance differed between the two cultivars: an 8h-photoperiod induced the highest level of freezing tolerance in Evolution and the lowest in 6010. In Evolution, the 8h-induced superior freezing tolerance was associated with higher concentration of raffinose-family oligosaccharides (RFO). The transcript levels of sucrose synthase (SuSy) decreased whereas those of sucrose phosphatase synthase (SPS) and galactinol synthase (GaS) increased in response to cold acclimation in both cultivars. Our results indicate that RFO metabolism could be involved in short photoperiod-induced freezing tolerance in dormant alfalfa cultivars. 10.1016/j.plantsci.2017.09.003