logo logo
Hepatitis B virus regulates apoptosis and tumorigenesis through the microRNA-15a-Smad7-transforming growth factor beta pathway. Liu Ningning,Jiao Tong,Huang Yan,Liu Wenjun,Li Zhiwei,Ye Xin Journal of virology UNLABELLED:Hepatitis B virus (HBV) infection causes chronic hepatitis in hundreds of millions of people worldwide, which can eventually lead to hepatocellular carcinoma (HCC). Previously, we found that HBV mRNAs can absorb microRNA-15a (miR-15a) to affect apoptosis through the Bcl-2 pathway. We asked whether HBV could inhibit apoptosis and promote tumorigenesis through different pathways. In this study, we found that the transforming growth factor β (TGF-β) pathway-inhibitory factor Smad7 is a novel target of miR-15a. We demonstrated that HBV can upregulate the level of Smad7 by downregulating miR-15a. Furthermore, we examined the level of Smad7 in liver samples from HBV-infected HCC patients and found that HBV mRNAs are positively correlated with the level of Smad7. By taking the approach of using immunoblotting and luciferase reporter assays, we revealed that HBV can abrogate TGF-β signaling via upregulating Smad7. By using annexin V staining and caspase 3/7 activity assays, we found that HBV can inhibit TGF-β-induced apoptosis of HepG2 cells. We also showed that HBV can promote tumor growth in BALB/c nude mice through upregulating the expression of Smad7. In conclusion, we demonstrated that HBV can upregulate Smad7 expression and inhibit TGF-β signaling, which makes the cells resistant to TGF-β-induced apoptosis and promotes tumorigenesis. IMPORTANCE:Hepatitis B virus (HBV) infection causes chronic hepatitis, which can eventually lead to hepatocellular carcinoma (HCC). TGF-β signaling is closely linked to liver fibrosis, cirrhosis, and subsequent HCC progression and plays a unique role in the pathogenesis of HCC. At the early stage of tumor formation, TGF-β functions as a tumor suppressor that inhibits cell proliferation and induces apoptosis. Previously, we found that HBV mRNAs can sponge off miR-15a to affect apoptosis through the Bcl-2 pathway. In this study, we identified that the TGF-β-inhibitory factor Smad7 is a novel target of miR-15a. We reveal that HBV can abrogate TGF-β signaling via upregulating Smad7, inhibit TGF-β-induced apoptosis, as well as promote tumor development. Our study provides evidence to support the idea that viral RNAs can exert their functions as competing endogenous RNAs (ceRNAs) toward microRNA and participate in important cellular processes. 10.1128/JVI.02784-14
Activation of the transforming growth factor-β/SMAD transcriptional pathway underlies a novel tumor-promoting role of sulfatase 1 in hepatocellular carcinoma. Dhanasekaran Renumathy,Nakamura Ikuo,Hu Chunling,Chen Gang,Oseini Abdul M,Seven Elif Sezin,Miamen Alexander G,Moser Catherine D,Zhou Wei,van Kuppevelt Toin H,van Deursen Jan M,Mounajjed Taofic,Fernandez-Zapico Martin E,Roberts Lewis R Hepatology (Baltimore, Md.) UNLABELLED:In vitro studies have proposed a tumor suppressor role for sulfatase 1 (SULF1) in hepatocellular carcinoma (HCC); however, high expression in human HCC has been associated with poor prognosis. The reason underlying this paradoxical observation remains to be explored. Using a transgenic (Tg) mouse model overexpressing Sulf1 (Sulf1-Tg), we assessed the effects of SULF1 on the diethylnitrosamine model of liver carcinogenesis. Sulf1-Tg mice show a higher incidence of large and multifocal tumors with diethylnitrosamine injection compared to wild-type mice. Lung metastases were found in 75% of Sulf1-Tg mice but not in wild-type mice. Immunohistochemistry, immunoblotting, and reporter assays all show a significant activation of the transforming growth factor-β (TGF-β)/SMAD transcriptional pathway by SULF1 both in vitro and in vivo. This effect of SULF1 on the TGF-β/SMAD pathway is functional; overexpression of SULF1 promotes TGF-β-induced gene expression and epithelial-mesenchymal transition and enhances cell migration/invasiveness. Mechanistic analyses demonstrate that inactivating mutation of the catalytic site of SULF1 impairs the above actions of SULF1 and diminishes the release of TGF-β from the cell surface. We also show that SULF1 expression decreases the interaction between TGF-β1 and its heparan sulfate proteoglycan sequestration receptor, TGFβR3. Finally, using gene expression from human HCCs, we show that patients with high SULF1 expression have poorer recurrence-free survival (hazard ratio 4.1, 95% confidence interval 1.9-8.3; P = 0.002) compared to patients with low SULF1. We also found strong correlations of SULF1 expression with TGF-β expression and with several TGF-β-related epithelial-mesenchymal transition genes in human HCC. CONCLUSION:Our study proposes a novel role of SULF1 in HCC tumor progression through augmentation of the TGF-β pathway, thus defining SULF1 as a potential biomarker for tumor progression and a novel target for drug development for HCC. 10.1002/hep.27658
Axl activates autocrine transforming growth factor-β signaling in hepatocellular carcinoma. Reichl Patrick,Dengler Mirko,van Zijl Franziska,Huber Heidemarie,Führlinger Gerhard,Reichel Christian,Sieghart Wolfgang,Peck-Radosavljevic Markus,Grubinger Markus,Mikulits Wolfgang Hepatology (Baltimore, Md.) UNLABELLED:In hepatocellular carcinoma (HCC), intrahepatic metastasis frequently correlates with epithelial to mesenchymal transition (EMT) of malignant hepatocytes. Several mechanisms have been identified to be essentially involved in hepatocellular EMT, among them transforming growth factor (TGF)-β signaling. Here we show the up-regulation and activation of the receptor tyrosine kinase Axl in EMT-transformed hepatoma cells. Knockdown of Axl expression resulted in abrogation of invasive and transendothelial migratory abilities of mesenchymal HCC cells in vitro and Axl overexpression-induced metastatic colonization of epithelial hepatoma cells in vivo. Importantly, Axl knockdown severely impaired resistance to TGF-β-mediated growth inhibition. Analysis of the Axl interactome revealed binding of Axl to 14-3-3ζ, which is essentially required for Axl-mediated cell invasion, transendothelial migration, and resistance against TGF-β. Axl/14-3-3ζ signaling caused phosphorylation of Smad3 linker region (Smad3L) at Ser213, resulting in the up-regulation of tumor-progressive TGF-β target genes such as PAI1, MMP9, and Snail as well as augmented TGF-β1 secretion in mesenchymal HCC cells. Accordingly, high Axl expression in HCC patient samples correlated with elevated vessel invasion of HCC cells, higher risk of tumor recurrence after liver transplantation, strong phosphorylation of Smad3L, and lower survival. In addition, elevated expression of both Axl and 14-3-3ζ showed strongly reduced survival of HCC patients. CONCLUSION:Our data suggest that Axl/14-3-3ζ signaling is central for TGF-β-mediated HCC progression and a promising target for HCC therapy. 10.1002/hep.27492
Transforming growth factor-β signaling in hepatocytes promotes hepatic fibrosis and carcinogenesis in mice with hepatocyte-specific deletion of TAK1. Gastroenterology BACKGROUND & AIMS:Transforming growth factor (TGF)-β-activated kinase 1 (TAK1) is activated in different cytokine signaling pathways. Deletion of Tak1 from hepatocytes results in spontaneous development of hepatocellular carcinoma (HCC), liver inflammation, and fibrosis. TGF-β activates TAK1 and Smad signaling, which regulate cell death, proliferation, and carcinogenesis. However, it is not clear whether TGF-β signaling in hepatocytes, via TGF-β receptor-2 (Tgfbr2), promotes HCC and liver fibrosis. METHODS:We generated mice with hepatocyte-specific deletion of Tak1 (Tak1ΔHep), as well as Tak1/Tgfbr2DHep and Tak1/Smad4ΔHep mice. Tak1flox/flox, Tgfbr2ΔHep, and Smad4ΔHep mice were used as controls, respectively. We assessed development of liver injury, inflammation, fibrosis, and HCC. Primary hepatocytes isolated from these mice were used to assess TGF-β-mediated signaling. RESULTS:Levels of TGF-β, TGF-βR2, and phospho-Smad2/3 were increased in HCCs from Tak1ΔHep mice, which developed liver fibrosis and inflammation by 1 month and HCC by 9 months. However, Tak1/Tgfbr2ΔHep mice did not have this phenotype, and their hepatocytes did not undergo spontaneous cell death or compensatory proliferation. Hepatocytes from Tak1ΔHep mice incubated with TGF-β did not activate p38, c-Jun N-terminal kinase, or nuclear factor-κB; conversely, TGF-β-mediated cell death and phosphorylation of Smad2/3 were increased, compared with control hepatocytes. Blocking the Smad pathway inhibited TGF-β-mediated death of Tak1-/- hepatocytes. Accordingly, disruption of Smad4 reduced the spontaneous liver injury, inflammation, fibrosis, and HCC that develops in Tak1ΔHep mice. Levels of the anti-apoptotic protein Bcl-xL, β-catenin, connective tissue growth factor, and vascular endothelial growth factor were increased in HCC from Tak1ΔHep mice, but not in HCCs from Tak1/Tgfbr2ΔHep mice. Injection of N-nitrosodiethylamine induced HCC formation in wild-type mice, but less in Tgfbr2ΔHep mice. CONCLUSIONS:TGF-β promotes development of HCC in Tak1ΔHep mice by inducing hepatocyte apoptosis and compensatory proliferation during early phases of tumorigenesis, and inducing expression of anti-apoptotic, pro-oncogenic, and angiogenic factors during tumor progression. 10.1053/j.gastro.2013.01.056
Compound Astragalus and Salvia miltiorrhiza extracts suppress hepatocarcinogenesis by modulating transforming growth factor-β/Smad signaling. Hu Xiangpeng,Rui Wenjuan,Wu Chao,He Shufang,Jiang Jiemei,Zhang Xiaoxiang,Yang Yan Journal of gastroenterology and hepatology BACKGROUND AND AIM:Previous studies showed Compound Astragalus and Salvia miltiorrhiza extract (CASE), extract from Astragalus membranaceus and Salvia miltiorhiza, significantly suppresses hepatocellular carcinoma (HCC) in rats induced by diethylinitrosamine (DEN), and in vitro experiments further demonstrated that CASE's anti-HepG2 cell invasion is associated with transforming growth factor-β (TGF-β). We hypothesized that CASE's suppression of HCC is modulated by TGF-β/Smad signaling, and we conducted this in vivo study to test this hypothesis. METHODS:Rats were divided into the normal control, the DEN group, and three CASE (60, 120, and 240 mg/kg) treatment groups. The expression of phosphorylation(p) Smad both at C-terminal and linker region, plasminogen activator inhibitor 1, and Smad4 and Smad7 of liver tissues were measured and compared across the five groups. RESULTS:The positive staining of pSmad2L and pSmad3L increased both in hepatoma nodule areas and adjacent relatively normal liver tissues in rats treated with DEN, while the positive staining of pSmad2C and pSmad3C increased only in relatively normal liver tissues adjacent to hepatoma tissues. The elevated expression of pSmad2C, pSmad2L, pSmad3L, Smad4, and plasminogen activator inhibitor 1 proteins were suppressed by CASE in a dose-dependent manner. CASE treatment also significantly reduced the intranuclear amounts of pSmad2L and pSmad3L, and upregulated the elevation of pSmad3C positive cells and protein expression in a dose-dependent manner. CONCLUSION:The results suggest that CASE significantly suppresses HCC progression by mediating TGF-β/Smad signaling, especially by modulating Smad3 phosphorylation both at the C-terminal and linker region. 10.1111/jgh.12490
Neuropilin-2 induced by transforming growth factor-β augments migration of hepatocellular carcinoma cells. Wittmann Philipp,Grubinger Markus,Gröger Christian,Huber Heidemarie,Sieghart Wolfgang,Peck-Radosavljevic Markus,Mikulits Wolfgang BMC cancer BACKGROUND:Hepatocellular carcinoma (HCC) is the most common form of liver cancer and the third most lethal cancer worldwide. The epithelial to mesenchymal transition (EMT) describes the transformation of well-differentiated epithelial cells to a de-differentiated phenotype and plays a central role in the invasion and intrahepatic metastasis of HCC cells. Modulation of the transforming growth factor-β (TGF-β) signaling is known to induce various tumor-promoting and EMT-inducing pathways in HCC. The meta-analysis of a panel of EMT gene expression studies revealed that neuropilin 2 (NRP2) is significantly upregulated in cells that have undergone EMT induced by TGF-β. In this study we assessed the functional role of NRP2 in epithelial and mesenchymal-like HCC cells and focused on the molecular interplay between NRP2 and TGF-β/Smad signaling. METHODS:NRP2 expression was analyzed in human HCC cell lines and tissue arrays comprising 133 HCC samples. Cell migration was examined by wound healing and Transwell assays in the presence and absence of siRNA against NRP2. NRP2 and TGF-β signaling were analyzed by Western blotting and confocal immunofluorescence microscopy. RESULTS:We show that NRP2 is particularly expressed in HCC cell lines with a dedifferentiated, mesenchymal-like phenotype. NRP2 expression is upregulated by the canonical TGF-β/Smad signaling while NRP2 expression has no impact on TGF-β signaling in HCC cells. Reduced expression of NRP2 by knock-down or inhibition of TGF-β signaling resulted in diminished cell migration independently of each other, suggesting that NRP2 fails to collaborate with TGF-β signaling in cell movement. In accordance with these data, elevated levels of NRP2 correlated with a higher tumor grade and less differentiation in a large collection of human HCC specimens. CONCLUSIONS:These data suggest that NRP2 associates with a less differentiated, mesenchymal-like HCC phenotype and that NRP2 plays an important role in tumor cell migration upon TGF-β-dependent HCC progression. 10.1186/s12885-015-1919-0
Mucin1 mediates autocrine transforming growth factor beta signaling through activating the c-Jun N-terminal kinase/activator protein 1 pathway in human hepatocellular carcinoma cells. Li Qiongshu,Liu Guomu,Shao Dan,Wang Juan,Yuan Hongyan,Chen Tanxiu,Zhai Ruiping,Ni Weihua,Tai Guixiang The international journal of biochemistry & cell biology In a previous study, we observed by global gene expression analysis that oncogene mucin1 (MUC1) silencing decreased transforming growth factor beta (TGF-β) signaling in the human hepatocellular carcinoma (HCC) cell line SMMC-7721. In this study, we report that MUC1 overexpression enhanced the levels of phosphorylated Smad3 linker region (p-Smad3L) (Ser-213) and its target gene MMP-9 in HCC cells, suggesting that MUC1 mediates TGF-β signaling. To investigate the effect of MUC1 on TGF-β signaling, we determined TGF-β secretion in MUC1 gene silencing and overexpressing cell lines. MUC1 expression enhanced not only TGF-β1 expression at the mRNA and protein levels but also luciferase activity driven by a TGF-β promoter, as well as elevated the activation of c-Jun N-terminal kinase (JNK) and c-Jun, a member of the activation protein 1 (AP-1) transcription factor family. Furthermore, pharmacological reduction of TGF-β receptor (TβR), JNK and c-Jun activity inhibited MUC1-induced autocrine TGF-β signaling. Moreover, a co-immunoprecipitation assay showed that MUC1 directly bound and activated JNK. In addition, both MUC1-induced TGF-β secretion and exogenous TGF-β1 significantly increased Smad signaling and cell migration, which were markedly inhibited by either TβR inhibitor or small interfering RNA silencing of TGF-β1 gene in HCC cells. The high correlation between MUC1 and TGF-β1 or p-Smad3L (Ser-213) expression was shown in tumor tissues from HCC patients by immunohistochemical staining analysis. Collectively, these results indicate that MUC1 mediates autocrine TGF-β signaling by activating the JNK/AP-1 pathway in HCC cells. Therefore, MUC1 plays a key role in HCC progression and could serve as an attractive target for HCC therapy. 10.1016/j.biocel.2014.11.012
Analysis of Genomes and Transcriptomes of Hepatocellular Carcinomas Identifies Mutations and Gene Expression Changes in the Transforming Growth Factor-β Pathway. Gastroenterology BACKGROUND & AIMS:Development of hepatocellular carcinoma (HCC) is associated with alterations in the transforming growth factor-beta (TGF-β) signaling pathway, which regulates liver inflammation and can have tumor suppressor or promoter activities. Little is known about the roles of specific members of this pathway at specific of HCC development. We took an integrated approach to identify and validate the effects of changes in this pathway in HCC and identify therapeutic targets. METHODS:We performed transcriptome analyses for a total of 488 HCCs that include data from The Cancer Genome Atlas. We also screened 301 HCCs reported in the Catalogue of Somatic Mutations in Cancer and 202 from Cancer Genome Atlas for mutations in genome sequences. We expressed mutant forms of spectrin beta, non-erythrocytic 1 (SPTBN1) in HepG2, SNU398, and SNU475 cells and measured phosphorylation, nuclear translocation, and transcriptional activity of SMAD family member 3 (SMAD3). RESULTS:We found somatic mutations in at least 1 gene whose product is a member of TGF-β signaling pathway in 38% of HCC samples. SPTBN1 was mutated in the largest proportion of samples (12 of 202, 6%). Unsupervised clustering of transcriptome data identified a group of HCCs with activation of the TGF-β signaling pathway (increased transcription of genes in the pathway) and a group of HCCs with inactivation of TGF-β signaling (reduced expression of genes in this pathway). Patients with tumors with inactivation of TGF-β signaling had shorter survival times than patients with tumors with activation of TGF-β signaling (P = .0129). Patterns of TGF-β signaling correlated with activation of the DNA damage response and sirtuin signaling pathways. HepG2, SNU398, and SNU475 cells that expressed the D1089Y mutant or with knockdown of SPTBN1 had increased sensitivity to DNA crosslinking agents and reduced survival compared with cells that expressed normal SPTBN1 (controls). CONCLUSIONS:In genome and transcriptome analyses of HCC samples, we found mutations in genes in the TGF-β signaling pathway in almost 40% of samples. These correlated with changes in expression of genes in the pathways; up-regulation of genes in this pathway would contribute to inflammation and fibrosis, whereas down-regulation would indicate loss of TGF-β tumor suppressor activity. Our findings indicate that therapeutic agents for HCCs can be effective, based on genetic features of the TGF-β pathway; agents that block TGF-β should be used only in patients with specific types of HCCs. 10.1053/j.gastro.2017.09.007
c-Jun N-terminal kinase inhibitor favors transforming growth factor-β to antagonize hepatitis B virus X protein-induced cell growth promotion in hepatocellular carcinoma. Wu Yan-Hui,Ai Xi,Liu Fu-Yao,Liang Hui-Fang,Zhang Bi-Xiang,Chen Xiao-Ping Molecular medicine reports Transforming growth factor (TGF)-β induces cell growth arrest in well-differentiated hepatocellular carcinoma (HCC) while hepatitis B virus X protein (HBx) minimizes the tumor suppression of TGF-β signaling in early chronic hepatitis B. However, how to reverse the oncogenic effect of HBx and sustain the tumor-suppressive action of TGF-β has yet to be investigated. The present study examined the effect of TGF-β and a c-Jun N-terminal kinase (JNK) inhibitor on cell growth in HCC cells with forced expression of HBx. It was found that HBx promoted cell growth via activation of the JNK/pSMAD3L pathway and inhibition of the transforming growth factor-beta type I receptor (TβRI)/pSMAD3C pathway. pSMAD3L/SMAD4 and pSMAD3C/SMAD4 complexes antagonized each other to regulate c-Myc expression. In the absence of HBx, TGF-β induced cell growth arrest through activation of the TβRI/pSMAD3C pathway in well-differentiated HCC cells. In the presence of HBx, TGF-β had no effect on cell growth. JNK inhibitor SP600125 significantly reversed the oncogenic action of HBx and favored TGF-β to regain the ability to inhibit the cell growth in HBx-expressing well-differentiated HCC cells. In conclusion, targeting JNK signaling favors TGF-β to block HBx-induced cell growth promotion in well-differentiated HCC cells. As an adjunct to anti-viral therapy, the combination of TGF-β and inhibition of JNK signaling is a potential therapy for HBV-infected HCC. 10.3892/mmr.2015.4644
Transforming Growth Factor-β and Axl Induce CXCL5 and Neutrophil Recruitment in Hepatocellular Carcinoma. Hepatology (Baltimore, Md.) Transforming growth factor (TGF)-β suppresses early hepatocellular carcinoma (HCC) development but triggers pro-oncogenic abilities at later stages. Recent data suggest that the receptor tyrosine kinase Axl causes a TGF-β switch toward dedifferentiation and invasion of HCC cells. Here, we analyzed two human cellular HCC models with opposing phenotypes in response to TGF-β. Both HCC models showed reduced proliferation and clonogenic growth behavior following TGF-β stimulation, although they exhibited differences in chemosensitivity and migratory abilities, suggesting that HCC cells evade traits of anti-oncogenic TGF-β. Transcriptome profiling revealed differential regulation of the chemokine CXCL5, which positively correlated with TGF-β expression in HCC patients. The expression and secretion of CXCL5 was dependent on Axl expression, suggesting that CXCL5 is a TGF-β target gene collaborating with Axl signaling. Loss of either TGF-β or Axl signaling abrogated CXCL5-dependent attraction of neutrophils. In mice, tumor formation of transplanted HCC cells relied on CXCL5 expression. In HCC patients, high levels of Axl and CXCL5 correlated with advanced tumor stages, recruitment of neutrophils into HCC tissue, and reduced survival. Conclusion: The synergy of TGF-β and Axl induces CXCL5 secretion, causing the infiltration of neutrophils into HCC tissue. Intervention with TGF-β/Axl/CXCL5 signaling may be an effective therapeutic strategy to combat HCC progression in TGF-β-positive patients. 10.1002/hep.30166
A Transforming Growth Factor-β and H19 Signaling Axis in Tumor-Initiating Hepatocytes That Regulates Hepatic Carcinogenesis. Zhang Jinqiang,Han Chang,Ungerleider Nathan,Chen Weina,Song Kyoungsub,Wang Ying,Kwon Hyunjoo,Ma Wenbo,Wu Tong Hepatology (Baltimore, Md.) Functions of transforming growth factor-β (TGF-β) in the liver vary depending on specific cell types and their temporal response to TGF-β during different stages of hepatocarcinogenesis (HCG). Through analysis of tumor tissues from hepatocellular carcinoma (HCC) patients, we were able to cluster hepatic epithelial cell-derived TGF-β gene signatures in association with distinct clinical prognoses. To delineate the role of hepatic epithelial TGF-β signaling in HCC development, we used an experimental system in which tumor-initiating hepatocytes (TICs) were isolated from TGF-β receptor II floxed mice (Tgfbr2 ) and transplanted into syngeneic C57BL/6J mice by splenic injection. Recipient mice were then administered Cre-expressing adenovirus (Ad-Cre) to inactivate Tgfbr2 in transplanted TICs. After latency, Tgfbr2-inactivated TICs formed larger and more tumor nodules in recipient livers compared to TICs without Tgfbr2 inactivation. In vitro analyses revealed that treatment of cultured TICs with TGF-β inhibited expression of progenitor cell factors (including SRY (sex determining region Y)-box 2 [Sox2]). RNA sequencing (RNA-seq) analysis identified H19 as one of the most up-regulated long noncoding RNA (lncRNA) in association with Tgfbr2 inactivation in TICs. Tgfbr2 inactivation by Ad-Cre led to a 5-fold increase of H19 expression in TICs. Accordingly, TGF-β treatment reduced H19 expression. We observed that forced overexpression of Sox2 in TICs increased transcription of H19, whereas knockdown of Sox2 decreased it. Furthermore, depletion of H19 reduced the progenitor property of TICs in vitro and decreased their tumorigenic potential in vivo. Finally, we observed a low level of H19 mRNA expression in human HCC tissues from patients with the epithelial TGF-β gene signature in association with favorable prognosis. Conclusion: Our findings describe a TGF-β and H19 signaling axis by Sox2 in TICs that importantly regulates HCG. 10.1002/hep.30153
Impact of Mesenchymal Stem Cells and Vitamin D on Transforming Growth Factor Beta Signaling Pathway in Hepatocellular Carcinoma in Rats Saad El-Din Shimaa,Fouad Hanan,Rashed Laila Ahmed,Mahfouz Soheir,Hussein Rania Elsayed Asian Pacific journal of cancer prevention : APJCP Background: Transforming growth factor-beta (TGF-β) signaling is recognized as being critical for carcinogenesis.Vitamin D has proved to exert numerous tumor suppressive effects. Effects of bone marrow derived mesenchymal stemcells (BM-MSCs) on tumor progression are still controversial. The present study was conducted to evaluate the effectsof BM-MSCs and vitamin D on TGF-β signaling in an experimental hepatocellular carcinoma (HCC) model in rats.Materials and Methods: The study was conducted on fifty female white albino rats divided equally into 5 groups:controls, HCC induced by diethyl-nitrosamine (DENA) and carbon tetrachloride (CCl4), HCC plus MSCs, HCC plusvitamin D and HCC plus both MSCs and vitamin D. The following parameters were assessed in rat liver tissues: TGF-βand Smad2 protein levels by ELISA and western blotting, respectively, gene expression of Smad3, Smad7, Snail,HNF4α and MMP-2 and histopathological lesions. Serum levels of alpha fetoprotein (AFP), ALT and albumin werealso assessed. Results: TGF-β protein levels and gene expression of its downstream effectors (Smad3 and Snail), inaddition to Smad2 protein levels were significantly higher in the HCC group than in the control group. On the otherhand, they were significantly down-regulated in all treated groups with most significant amelioration with both MSCsand vitamin D. Also, the serum levels of AFP were significantly increased in the untreated HCC group, and this wasagain reversed in all treated groups. Histopathological examination of liver tissue revealed that administration ofMSCs or vitamin D into HCC rat group improved the histopathological picture with residual tumor pathology, whileadministration of both MSCs and vitamin D showed better restoration of liver parenchyma. These data suggest thatthe TGF-β signaling pathway could be used as a therapeutic target in HCC. 10.22034/APJCP.2018.19.4.905
Transforming growth factor-β-induced plasticity causes a migratory stemness phenotype in hepatocellular carcinoma. Malfettone Andrea,Soukupova Jitka,Bertran Esther,Crosas-Molist Eva,Lastra Raquel,Fernando Joan,Koudelkova Petra,Rani Bhavna,Fabra Ángels,Serrano Teresa,Ramos Emilio,Mikulits Wolfgang,Giannelli Gianluigi,Fabregat Isabel Cancer letters As part of its potential pro-tumorigenic actions, Transforming Growth Factor-(TGF)-β induces epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma (HCC) cells. Whether EMT induces changes in tumor cell plasticity has not been fully explored yet. Here, we analyze the effects of TGF-β on the EMT and stem-related properties of HCC cells and the potential correlation among those processes. The translational aim of the study was to propose a TGF-β/EMT/stem gene signature that would help in recognizing HCC patients as good candidates for anti-TGF-β therapy. Results indicate that when TGF-β induces EMT in HCC cells, a switch in the expression of stem genes is observed and their stemness potential and migratory/invasive capacity are enhanced. However, TGF-β may induce a partial EMT in some epithelial HCC cells, increasing the expression of mesenchymal genes and CD44, but maintaining epithelial gene expression. Epithelial cells show higher stemness potential than the mesenchymal ones, but respond to TGF-β increasing their migratory and invasive capacity. In HCC patient samples, TGFB1 expression most frequently correlates with a partial EMT, increase in mesenchymal genes and CD44 expression, as well as maintenance or over-expression of epithelial-related genes. 10.1016/j.canlet.2017.01.037