logo logo
Biodegradation behavior of gellan gum in simulated colonic media. Singh Brahma N,Trombetta Louis D,Kim Kwon H Pharmaceutical development and technology The objective of this investigation was to test the biodegradability of gellan gum in the presence of galactomannanase in order to explore its suitability for the development of colon-specific controlled delivery systems. Gellan beads containing azathioprine (AZA) were prepared by ionotropic gelation in the presence of Ca2+ ions and were coated with an enteric polymer, Eudragit S-100. The effects of the simulated colonic fluid (SCF, pH 7.4 phosphate buffer) containing 15 mg/mL of galactomannanase on the in vitro release profiles of uncoated and enteric-coated beads were investigated, and the morphological changes in the structure of uncoated beads were assessed by scanning electron microscopy (SEM). In addition, 1% solution of deacetylated gellan gum was prepared and several aliquots of the resulting solution were evaluated rheologically to determine the concentration- and time-dependent effects of galactomannanase. Based on the percent drug released at 2 h, approximately 10% greater amount of drug was released in the SCF containing galactomannanase when compared with the enzyme-free dissolution medium. Results of rheological studies demonstrated that effects of galactomannanase on the viscosity of gellan gum solution are concentration-dependent rather than time-dependent. A significant decrease in the viscosity was noted in the presence of galactomannanase at a concentration of 15 mg/ mL, indicating that the polysaccharide degraded in an enzymatic reaction. SEM micrographs showed a distinct disruption of the polymeric network in the SCF. Overall, the results suggest that gellan gum undergoes significant degradation in the presence of galactomannanase which in turn facilitates the drug release from beads in the SCF in a controlled manner, thus approving the suitability of gellan gum as a carrier for controlled colonic delivery. 10.1081/pdt-200035793
Formulation development and in-vitro/in-vivo correlation for a novel Sterculia gum-based oral colon-targeted drug delivery system of azathioprine. Nath Bipul,Nath Lila Kanta Drug development and industrial pharmacy The present study was aimed at designing a microflora triggered colon-targeted drug delivery system (MCDDS) based on swellable polysaccharide, Sterculia gum in combination with biodegradable polymers with a view to target azathioprine (AZA) in the colon for the treatment of IBD with reduced systemic toxicity. The microflora degradation study of gum was investigated in rat cecal medium. The polysaccharide tablet was coated to different film thicknesses with blends of chitosan/Eudragit RLPO and over coated with Eudragit L00 to provide acid and intestinal resistance. Swelling and drug release studies were carried out in simulated gastric fluid (SGF) (pH 1.2), simulated intestinal fluid (SIF) (pH 6.8) and simulated colonic fluid (SCF) (pH 7.4 under anaerobic environment), respectively. Drug release study in SCF revealed that swelling force of the gum could concurrently drive the drug out of the polysaccharide core due to the rupture of the chitosan/Eudragit coating in microflora-activated environment. Chitosan in the mixed film coat was found to be degraded by enzymatic action of the microflora in the colon. Release kinetic data revealed that, the optimized MCDDS was fitted well into first order model and apparent lag time was found to be 6 h, followed by Higuchi spherical matrix release. The degradation of chitosan was the rate-limiting factor for drug release in the colon. In-vivo study in rabbit shows delayed T(max), prolonged absorption time, decreased C(max) and absorption rate constant (Ka) indicating reduced systemic toxicity of the drug as compared to other dosage forms. 10.3109/03639045.2012.736517
Optimization of Time Controlled 6-mercaptopurine Delivery for Site- Specific Targeting to Colon Diseases. Hude Rahul U,Jagdale Swati C Current drug delivery BACKGROUND:6-MP has short elimination time (<2 h) and low bioavailability (~ 50%). Present study was aimed to develop time controlled and site targeted delivery of 6-Mercaptopurine (6-MP) for treatment of colon diseases. METHODS:Compression coating technique was used. 32 full factorial design was designed for optimization of the outer coat for the core tablet. For outer coat amount of Eudragit RS 100 and hydroxypropyl methylcellulose (HPMC K100) were employed as independent variables each at three levels while responses evaluated were swelling index and bursting time. Direct compression method was used for tablets formulation. RESULTS:80% w/w of microcrystalline cellulose and 20% w/w of croscarmellose sodium were found to be optimum concentration for the core tablet. The outer coat of optimized batch (ED) contains 21.05% w/w Eudragit RS 100 and 78.95% w/w HPMC K100 of total polymer weight. In-vitro dissolution study indicated that combination of polymer retards the drug release in gastric region and releases ≥95% of drug in colonic region after ≥7 h. Whereas in case of in-vivo placebo x-ray imaging study had shown that the tablet reaches colonic part after 5±0.5 h providing the proof of arrival in the colon. Stability study indicated that the optimized formulation were physically and chemically stable. CONCLUSION:Present research work concluded that compression coating by Eudragit RS 100 and HPMC K100 to 6-MP core provides potential colon targeted system with advantages of reduced gastric exposure and enhanced bioavailability. Formulation can be considered as potential and promising candidate for the treatment of colon diseases. 10.2174/1567201812666150317123226
Oral administration of non-absorbable delayed release 6-mercaptopurine is locally active in the gut, exerts a systemic immune effect and alleviates Crohn's disease with low rate of side effects: results of double blind Phase II clinical trial. Israeli E,Goldin E,Fishman S,Konikoff F,Lavy A,Chowers Y,Melzer E,Lahat A,Mahamid M,Shirin H,Nussinson E,Segol O,Ya'acov A Ben,Shabbat Y,Ilan Y Clinical and experimental immunology Therapy for Crohn's disease (CD) with thiopurines is limited by systemic side effects. A novel formulation of fixed-dose, delayed-release 6-mercaptopurine (DR-6MP) was developed, with local effect on the gut immune system and minimal absorption. The aim of this study was to evaluate the safety and efficacy of DR-6MP in patients with moderately severe CD compared to systemically delivered 6-mercaptopurine (Purinethol). Seventy CD patients were enrolled into a 12-week, double-blind controlled trial. The primary end-point was the percentage of subjects with clinical remission [Crohn's Disease Activity Index (CDAI) < 150] or clinical response (100-point CDAI reduction). Twenty-six (56·5%) and 13 (54·2%) subjects from the DR-6MP and Purinethol cohorts, respectively, completed the study. DR-6MP had similar efficacy to Purinethol following 12 weeks of treatment. However, the time to maximal clinical response was 8 weeks for DR-6MP versus 12 weeks for Purinethol. A higher proportion of patients on DR-6MP showed clinical remission at week 8. A greater improvement in Inflammatory Bowel Disease Questionnaire (IBDQ) score was noted in the DR-6MP group. DR-6MP led to a decrease of CD62(+) expression on T cells, implying a reduction of lymphocyte adhesion to site of inflammation. DR-6MP was safer than Purinethol, with significantly fewer adverse events (AEs). There was no evidence of drug-induced leucopenia in the DR-6MP group; the proportion of subjects who developed hepatotoxicity was lower for the DR-6MP. Non-absorbable DR-6MP is safe and biologically active in the gut. It is clinically effective, exerting a systemic immune response with low systemic bioavailability and a low incidence of side effects. 10.1111/cei.12640