logo logo
Paracrine cellular senescence exacerbates biliary injury and impairs regeneration. Nature communications Cellular senescence is a mechanism that provides an irreversible barrier to cell cycle progression to prevent undesired proliferation. However, under pathological circumstances, senescence can adversely affect organ function, viability and regeneration. We have developed a mouse model of biliary senescence, based on the conditional deletion of Mdm2 in bile ducts under the control of the Krt19 promoter, that exhibits features of biliary disease. Here we report that senescent cholangiocytes induce profound alterations in the cellular and signalling microenvironment, with recruitment of myofibroblasts and macrophages causing collagen deposition, TGFβ production and induction of senescence in surrounding cholangiocytes and hepatocytes. Finally, we study how inhibition of TGFβ-signalling disrupts the transmission of senescence and restores liver function. We identify cellular senescence as a detrimental mechanism in the development of biliary injury. Our results identify TGFβ as a potential therapeutic target to limit senescence-dependent aggravation in human cholangiopathies. 10.1038/s41467-018-03299-5
Hdac1 Regulates Differentiation of Bipotent Liver Progenitor Cells During Regeneration via Sox9b and Cdk8. Ko Sungjin,Russell Jacquelyn O,Tian Jianmin,Gao Ce,Kobayashi Makoto,Feng Rilu,Yuan Xiaodong,Shao Chen,Ding Huiguo,Poddar Minakshi,Singh Sucha,Locker Joseph,Weng Hong-Lei,Monga Satdarshan P,Shin Donghun Gastroenterology BACKGROUND & AIMS:Upon liver injury in which hepatocyte proliferation is compromised, liver progenitor cells (LPCs), derived from biliary epithelial cells (BECs), differentiate into hepatocytes. Little is known about the mechanisms of LPC differentiation. We used zebrafish and mouse models of liver injury to study the mechanisms. METHODS:We used transgenic zebrafish, Tg(fabp10a:CFP-NTR), to study the effects of compounds that alter epigenetic factors on BEC-mediated liver regeneration. We analyzed zebrafish with disruptions of the histone deacetylase 1 gene (hdac1) or exposed to MS-275 (an inhibitor of Hdac1, Hdac2, and Hdac3). We also analyzed zebrafish with mutations in sox9b, fbxw7, kdm1a, and notch3. Zebrafish larvae were collected and analyzed by whole-mount immunostaining and in situ hybridization; their liver tissues were collected for quantitative reverse transcription polymerase chain reaction. We studied mice in which hepatocyte-specific deletion of β-catenin (Ctnnb1 mice injected with Adeno-associated virus serotype 8 [AAV8]-TBG-Cre) induces differentiation of LPCs into hepatocytes after a choline-deficient, ethionine-supplemented (CDE) diet. Liver tissues were collected and analyzed by immunohistochemistry and immunoblots. We performed immunohistochemical analyses of liver tissues from patients with compensated or decompensated cirrhosis or acute on chronic liver failure (n = 15). RESULTS:Loss of Hdac1 activity in zebrafish blocked differentiation of LPCs into hepatocytes by increasing levels of sox9b mRNA and reduced differentiation of LPCs into BECs by increasing levels of cdk8 mRNA, which encodes a negative regulator gene of Notch signaling. We identified Notch3 as the receptor that regulates differentiation of LPCs into BECs. Loss of activity of Kdm1a, a lysine demethylase that forms repressive complexes with Hdac1, produced the same defects in differentiation of LPCs into hepatocytes and BECs as observed in zebrafish with loss of Hdac1 activity. Administration of MS-275 to mice with hepatocyte-specific loss of β-catenin impaired differentiation of LPCs into hepatocytes after the CDE diet. HDAC1 was expressed in reactive ducts and hepatocyte buds of liver tissues from patients with cirrhosis. CONCLUSIONS:Hdac1 regulates differentiation of LPCs into hepatocytes via Sox9b and differentiation of LPCs into BECs via Cdk8, Fbxw7, and Notch3 in zebrafish with severe hepatocyte loss. HDAC1 activity was also required for differentiation of LPCs into hepatocytes in mice with liver injury after the CDE diet. These pathways might be manipulated to induce LPC differentiation for treatment of patients with advanced liver diseases. 10.1053/j.gastro.2018.09.039
Epigenetic remodelling licences adult cholangiocytes for organoid formation and liver regeneration. Nature cell biology Following severe or chronic liver injury, adult ductal cells (cholangiocytes) contribute to regeneration by restoring both hepatocytes and cholangiocytes. We recently showed that ductal cells clonally expand as self-renewing liver organoids that retain their differentiation capacity into both hepatocytes and ductal cells. However, the molecular mechanisms by which adult ductal-committed cells acquire cellular plasticity, initiate organoids and regenerate the damaged tissue remain largely unknown. Here, we describe that ductal cells undergo a transient, genome-wide, remodelling of their transcriptome and epigenome during organoid initiation and in vivo following tissue damage. TET1-mediated hydroxymethylation licences differentiated ductal cells to initiate organoids and activate the regenerative programme through the transcriptional regulation of stem-cell genes and regenerative pathways including the YAP-Hippo signalling. Our results argue in favour of the remodelling of genomic methylome/hydroxymethylome landscapes as a general mechanism by which differentiated cells exit a committed state in response to tissue damage. 10.1038/s41556-019-0402-6
De novo formation of the biliary system by TGFβ-mediated hepatocyte transdifferentiation. Schaub Johanna R,Huppert Kari A,Kurial Simone N T,Hsu Bernadette Y,Cast Ashley E,Donnelly Bryan,Karns Rebekah A,Chen Feng,Rezvani Milad,Luu Hubert Y,Mattis Aras N,Rougemont Anne-Laure,Rosenthal Philip,Huppert Stacey S,Willenbring Holger Nature Transdifferentiation is a complete and stable change in cell identity that serves as an alternative to stem-cell-mediated organ regeneration. In adult mammals, findings of transdifferentiation have been limited to the replenishment of cells lost from preexisting structures, in the presence of a fully developed scaffold and niche. Here we show that transdifferentiation of hepatocytes in the mouse liver can build a structure that failed to form in development-the biliary system in a mouse model that mimics the hepatic phenotype of human Alagille syndrome (ALGS). In these mice, hepatocytes convert into mature cholangiocytes and form bile ducts that are effective in draining bile and persist after the cholestatic liver injury is reversed, consistent with transdifferentiation. These findings redefine hepatocyte plasticity, which appeared to be limited to metaplasia, that is, incomplete and transient biliary differentiation as an adaptation to cell injury, based on previous studies in mice with a fully developed biliary system. In contrast to bile duct development, we show that de novo bile duct formation by hepatocyte transdifferentiation is independent of NOTCH signalling. We identify TGFβ signalling as the driver of this compensatory mechanism and show that it is active in some patients with ALGS. Furthermore, we show that TGFβ signalling can be targeted to enhance the formation of the biliary system from hepatocytes, and that the transdifferentiation-inducing signals and remodelling capacity of the bile-duct-deficient liver can be harnessed with transplanted hepatocytes. Our results define the regenerative potential of mammalian transdifferentiation and reveal opportunities for the treatment of ALGS and other cholestatic liver diseases. 10.1038/s41586-018-0075-5
Bidirectional Cross-Talk between Biliary Epithelium and Th17 Cells Promotes Local Th17 Expansion and Bile Duct Proliferation in Biliary Liver Diseases. Journal of immunology (Baltimore, Md. : 1950) There is no effective treatment for autoimmune biliary diseases. Therefore, understanding their immunopathology is crucial. The biliary epithelial cells (BEC), expressing TLR-4, are constantly exposed to gut microbes and bacterial wall LPS, and in settings of inflammation, the immune infiltrate is dense within the peribiliary region of human liver. By dual immunohistochemistry, we affirm human intrahepatic T cell infiltrate includes CCR6CD4 and AhRCD4 T cells with potential for plasticity to Th17 phenotype. Mechanistically, we demonstrate that Th1 and Th17 inflammatory cytokines and LPS enhance human primary BEC release of the CCR6 ligand CCL20 and BEC secretion of Th17-polarizing cytokines IL-6 and IL-1β. Cell culture assays with human BEC secretome showed that secretome polarizes CD4 T cells toward a Th17 phenotype and supports the survival of Th17 cells. BEC secretome did not promote Th1 cell generation. Additionally, we give evidence for a mutually beneficial feedback of the type 17 cell infiltrate on BEC, showing that treatment with type 17 cytokines increases BEC proliferation, as monitored by Ki67 and activation of JAK2-STAT3 signaling. This study identifies human BEC as active players in determining the nature of the intrahepatic immune microenvironment. In settings of inflammation and/or infection, biliary epithelium establishes a prominent peribiliary type 17 infiltrate via recruitment and retention and enhances polarization of intrahepatic CD4 cells toward Th17 cells via type 17 cytokines, and, reciprocally, Th17 cells promote BEC proliferation for biliary regeneration. Altogether, we provide new insight into cross-talk between Th17 lymphocytes and human primary biliary epithelium in biliary regenerative pathologies. 10.4049/jimmunol.1800455
Intrahepatic bile ducts guide establishment of the intrahepatic nerve network in developing and regenerating mouse liver. Tanimizu Naoki,Ichinohe Norihisa,Mitaka Toshihiro Development (Cambridge, England) Epithelial organs consist of multiple tissue structures, such as epithelial sheets, blood vessels and nerves, which are spatially organized to achieve optimal physiological functions. The hepatic nervous system has been implicated in physiological functions and regeneration of the liver. However, the processes of development and reconstruction of the intrahepatic nerve network and its underlying mechanisms remain unknown. Here, we demonstrate that neural class III β-tubulin (TUBB3) nerve fibers are not distributed in intrahepatic tissue at embryonic day 17.5; instead, they gradually extend along the periportal tissue, including intrahepatic bile ducts (IHBDs), after birth. Nerve growth factor () expression increased in biliary epithelial cells (BECs) and mesenchymal cells next to BECs before nerve fiber extension, and was upregulated by hairy enhancer of slit 1 (Hes family bHLH transcription factor 1; Hes1). Ectopic NGF expression in mature hepatocytes induced nerve fiber extension into the parenchymal region, from where these fibers are normally excluded. Furthermore, after BECs were damaged by the administration of 4,4-diaminodiphenylmethane, the nerve network appeared shrunken; however, it was reconstructed after IHBD regeneration, which depended on the NGF signal. These results suggest that IHBDs guide the extension of nerve fibers by secreting NGF during nerve fiber development and regeneration. 10.1242/dev.159095
Repair of extrahepatic bile duct defect using a collagen patch in a Swine model. Tao Liang,Li Qiang,Ren Haozhen,Chen Bing,Hou Xianglin,Mou Lingjun,Zhou Siqiao,Zhou Jianxin,Sun Xitai,Dai Jianwu,Ding Yitao Artificial organs Extrahepatic bile duct (EBD) injury can happen during surgery. To repair a defect of the EBD and prevent postoperative biliary complications, a collagen membrane was designed. The collagen material was porous, biocompatible, and degradable and could maintain its shape in bile soaking for about 4 weeks. The goal was to induce rapid bile duct tissue regeneration. Twenty Chinese experimental hybrid pigs were used in this study and divided into a patch group and a control group. A spindle-shaped defect (20 mm × 6 mm) was made in the anterior wall of the lower EBD in the swine model, and then the defect was reconstructed using a collagen patch with a drainage tube and wrapped with greater omentum. Ultrasound was performed at 2, 4, 8, and 12 weeks postoperatively. Liver function tests and white blood cell count (WBC) were measured. Hematoxylin-eosin staining, cytokeratin 7 immunohistochemical staining, and Van Gieson's staining of EBD were used. The diameter and thickness of the EBD at the graft site were measured. There was no significant difference in liver function tests or WBC in the patch group compared with the control group. No evidence of leakage or stricture was observed, but some pigs developed biliary sludge or stone at 4 and 8 weeks. The drainage tube was lost within 12 weeks. The neo-EBD could withstand normal biliary pressure 2 weeks after surgery. Histological study showed the accessory glands and epithelial cells gradually regenerated at graft sites from 4 weeks, with increasing vessel infiltration and decreasing inflammation. The collagen fibers became regular with full coverage of epithelial cells. The statistical analysis of diameter and thickness showed no stricture formation at the graft site, but the EBD wall was slightly thicker than in the normal bile duct due to collagen fiber deposition. The structure of the neo-EBD was similar to that of the normal EBD. The collagen membrane patch associated with a drainage tube and wrapped with greater omentum effectively induced the regeneration of the EBD defect within 12 weeks. 10.1111/aor.12388
Intrahepatic bile duct regeneration in mice does not require Hnf6 or Notch signaling through Rbpj. Walter Teagan J,Vanderpool Charles,Cast Ashley E,Huppert Stacey S The American journal of pathology The potential for intrahepatic bile duct (IHBD) regeneration in patients with bile duct insufficiency diseases is poorly understood. Notch signaling and Hnf6 have each been shown to be important for the morphogenesis of IHBDs in mice. One congenital pediatric liver disease characterized by reduced numbers of IHBDs, Alagille syndrome, is associated with mutations in Notch signaling components. Therefore, we investigated whether liver cell plasticity could contribute to IHBD regeneration in mice with disruptions in Notch signaling and Hnf6. We studied a mouse model of bile duct insufficiency with liver epithelial cell-specific deficiencies in Hnf6 and Rbpj, a mediator of canonical Notch signaling. Albumin-Cre Hnf6(flox/flox)Rbpj(flox/flox) mice initially developed no peripheral bile ducts. The evolving postnatal liver phenotype was analyzed using IHBD resin casting, immunostaining, and serum chemistry. With age, Albumin-Cre Hnf6(flox/flox)Rbpj(flox/flox) mice mounted a ductular reaction extending through the hepatic tissue and then regenerated communicating peripheral IHBD branches. Rbpj and Hnf6 were determined to remain absent from biliary epithelial cells constituting the ductular reaction and the regenerated peripheral IHBDs. We report the expression of Sox9, a marker of biliary epithelial cells, in cells expressing hepatocyte markers. Tissue analysis indicates that reactive ductules did not arise directly from preexisting hilar IHBDs. We conclude that liver cell plasticity is competent for regeneration of IHBDs independent of Notch signaling via Rbpj and Hnf6. 10.1016/j.ajpath.2014.01.030
Peribiliary Glands Are Key in Regeneration of the Human Biliary Epithelium After Severe Bile Duct Injury. de Jong Iris E M,Matton Alix P M,van Praagh Jasper B,van Haaften Wouter T,Wiersema-Buist Janneke,van Wijk Louise A,Oosterhuis Dorenda,Iswandana Raditya,Suriguga Su,Overi Diletta,Lisman Ton,Carpino Guido,Gouw Annette S H,Olinga Peter,Gaudio Eugenio,Porte Robert J Hepatology (Baltimore, Md.) Peribiliary glands (PBG) are a source of stem/progenitor cells organized in a cellular network encircling large bile ducts. Severe cholangiopathy with loss of luminal biliary epithelium has been proposed to activate PBG, resulting in cell proliferation and differentiation to restore biliary epithelial integrity. However, formal evidence for this concept in human livers is lacking. We therefore developed an ex vivo model using precision-cut slices of extrahepatic human bile ducts obtained from discarded donor livers, providing an intact anatomical organization of cell structures, to study spatiotemporal differentiation and migration of PBG cells after severe biliary injury. Postischemic bile duct slices were incubated in oxygenated culture medium for up to a week. At baseline, severe tissue injury was evident with loss of luminal epithelial lining and mural stroma necrosis. In contrast, PBG remained relatively well preserved and different reactions of PBG were noted, including PBG dilatation, cell proliferation, and maturation. Proliferation of PBG cells increased after 24 hours of oxygenated incubation, reaching a peak after 72 hours. Proliferation of PBG cells was paralleled by a reduction in PBG apoptosis and differentiation from a primitive and pluripotent (homeobox protein Nanog+/ sex-determining region Y-box 9+) to a mature (cystic fibrosis transmembrane conductance regulator+/secretin receptor+) and activated phenotype (increased expression of hypoxia-inducible factor 1 alpha, glucose transporter 1, and vascular endothelial growth factor A). Migration of proliferating PBG cells in our ex vivo model was unorganized, but resulted in generation of epithelial monolayers at stromal surfaces. Conclusion: Human PBG contain biliary progenitor cells and are able to respond to bile duct epithelial loss with proliferation, differentiation, and maturation to restore epithelial integrity. The ex vivo spatiotemporal behavior of human PBG cells provides evidence for a pivotal role of PBG in biliary regeneration after severe injury. 10.1002/hep.30365