logo logo
Identification of a novel interacting partner of the chemosensory protein 1 from Plutella xylostella L. Yi Xin,Liu XiaoLei,Zhao HaiMing,Wang PeiDan,Rizwan-ul-Haq Muhammad,Hu MeiYing,Zhong GuoHua International journal of biological macromolecules Chemosensory proteins (CSPs) are small soluble proteins endowed with heterogeneous functions. The information so far available for CSPs suggested these well-defined and conserved proteins were involved in diverse activities, including chemical communication, feeding, development, mating, immune regulation, as well as circadian rhythms. However, the detailed mechanisms of these physiological functions remain elusive. To explore the underlying mechanisms of CSPs and their interaction partners, a cDNA library from the head of Plutella xylostella was screened against CSP1 to identify proteins involved in the PxylCSP1-related physiological activities. Protein kinase C (PKC) was screened out as a putative interacting protein of PxylCSP1. The full length of PxylPKC cDNA was obtained, and the results of semi-quantitative real-time PCR and quantitative real-time PCR revealed that PxylPKC showed similar expression pattern as PxylCSP1. In vivo and in vitro interactions between PxylCSP1 and PxylPKC were further confirmed by co-immunoprecipitation and GST pull-down assays, respectively. These findings extended our knowledge on the mechanisms of CSP-regulated functions, and providing new target proteins to facilitate the design of novel intervention strategies against the pest. 10.1016/j.ijbiomac.2013.09.037
Molecular evidence of RNA editing in Bombyx chemosensory protein family. PloS one Chemosensory proteins (CSPs) are small scavenger proteins that are mainly known as transporters of pheromone/odor molecules at the periphery of sensory neurons in the insect antennae and in the producing cells from the moth female pheromone gland. Sequencing cDNAs of RNA encoding CSPs in the antennae, legs, head, pheromone gland and wings from five single individual adult females of the silkworm moth Bombyx mori showed that they differed from genomic sequences by subtle nucleotide replacement (RDD). Both intronless and intronic CSP genes expressed RDDs, although in different rates. Most interestingly, in our study the degree of RDDs in CSP genes were found to be tissue-specific. The proportion of CSP-RDDs was found to be significantly much higher in the pheromone gland. In addition, Western blot analysis of proteins in different tissues showed existence of multiple CSP protein variant chains particularly found in the pheromone gland. Peptide sequencing demonstrated the occurrence of a pleiad of protein variants for most of all BmorCSPs from the pheromone gland. Our findings show that RNA editing is an important feature in the expression of CSPs and that a high variety of RDDs is found to expand drastically thus altering the repertoire of CSP proteins in a tissue-specific manner. 10.1371/journal.pone.0086932
Construction and analysis of antennal cDNA library from rice striped stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), and expression profiles of putative odorant-binding protein and chemosensory protein genes. Gong Zhong-Jun,Liu Su,Jiang Yan-Dong,Zhou Wen-Wu,Liang Qing-Mei,Cheng Jiaan,Zhang Chuan-Xi,Zhu Zeng-Rong,Gurr Geoff M Archives of insect biochemistry and physiology In this study, we constructed a high-quality cDNA library from the antennae of the Chilo suppressalis (Walker) (Lepidoptera: Pyralidae). A total of 1,235 colonies with inserts greater than 0.7 kb were sequenced and analyzed. Homology searching coupled with bioinformatics analysis identified 15 and 7 cDNA sequences, respectively, encoding putative odorant-binding proteins (OBPs) and chemosensory proteins (CSPs). A phylogenetic tree of CsupCSPs showed that each CsupCSP has orthologs in Manduca sexta and Bombyx mori with strong bootstrapping support. One CSP was either very specific or more related to the CSPs of another species than to conspecific CSP. The expression profiles of the OBPs and CSPs in different tissues were measured by real-time quantitative PCR. The results revealed that of the 11 OBP genes, the transcript levels of CsupOBP1, CsupOBP5, and CsupOBP7 were higher in both male and female antennae than those in other tissues. And CsupCSP7 was highly expressed in both male and female antennae. Based on these results, the possible physiological functions of CsupOBPs and CsupCSPs were discussed. 10.1002/arch.21224
Expression Analysis and Binding Assays in the Chemosensory Protein Gene Family Indicate Multiple Roles in Helicoverpa armigera. Li Zhao-Qun,Zhang Shuai,Luo Jun-Yu,Zhu Jing,Cui Jin-Jie,Dong Shuang-Lin Journal of chemical ecology Chemosensory proteins (CSPs) have been proposed to capture and transport hydrophobic chemicals to receptors on sensory neurons. We identified and cloned 24 CSP genes to better understand the physiological function of CSPs in Helicoverpa armigera. Quantitative real-time polymerase chain reaction assays indicate that CSP genes are ubiquitously expressed in adult H. armigera tissues. Broad expression patterns in adult tissues suggest that CSPs are involved in a diverse range of cellular processes, including chemosensation as well as other functions not related to chemosensation. The H. armigera CSPs that were highly transcribed in sensory organs or pheromone glands (HarmCSPs 6, 9, 18, 19), were recombinantly expressed in bacteria to explore their function. Fluorescent competitive binding assays were used to measure the binding affinities of these CSPs against 85 plant volatiles and 4 pheromone components. HarmCSP6 displays high binding affinity for pheromone components, whereas the other three proteins do not show affinities for any of the compounds tested. HarmCSP6 is expressed in numerous cells located in or close to long sensilla trichodea on the antennae of both males and females. These results suggest that HarmCSP6 may be involved in transporting female sex pheromones in H. armigera. 10.1007/s10886-015-0574-x
Sequence variation of Bemisia tabaci Chemosensory Protein 2 in cryptic species B and Q: New DNA markers for whitefly recognition. Liu Guo-Xia,Ma Hong-Mei,Xie Hong-Yan,Xuan Ning,Picimbon Jean-François Gene Bemisia tabaci Gennadius biotypes B and Q are two of the most important worldwide agricultural insect pests. Genomic sequences of Type-2 B. tabaci chemosensory protein (BtabCSP2) were cloned and sequenced in B and Q biotypes, revealing key biotype-specific variations in the intron sequence. A Q260 sequence was found specifically in Q-BtabCSP2 and Cucumis melo LN692399, suggesting ancestral horizontal transfer of gene between the insect and the plant through bacteria. A cleaved amplified polymorphic sequences (CAPS) method was then developed to differentiate B and Q based on the sequence variation in exon of BtabCSP2 gene. The performances of CSP2-based CAPS for whitefly recognition were assessed using B. tabaci field collections from Shandong Province (P.R. China). Our SacII based CAPS method led to the same result compared to mitochondrial cytochrome oxidase-based CAPS method in the field collections. We therefore propose an explanation for CSP origin and a new rapid simple molecular method based on genomic DNA and chemosensory gene to differentiate accurately the B and Q whiteflies of the Bemisia complex around the world. 10.1016/j.gene.2015.10.036
Retraction Note to: Involvement of a Specific Chemosensory Protein from Bactrocera dorsalis in Perceiving Host Plant Volatiles. Yi Xin,Wang PeiDan,Wang Zheng,Cai Jun,Hu MeiYing,Zhong GuoHua Journal of chemical ecology 10.1007/s10886-016-0707-x
Identification and Expression Analysis of Candidate Odorant-Binding Protein and Chemosensory Protein Genes by Antennal Transcriptome of Sitobion avenae. Xue Wenxin,Fan Jia,Zhang Yong,Xu Qingxuan,Han Zongli,Sun Jingrui,Chen Julian PloS one Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) of aphids are thought to be responsible for the initial molecular interactions during olfaction that mediate detection of chemical signals. Analysis of the diversity of proteins involved comprises critical basic research work that will facilitate the development of sustainable pest control strategies. To help us better understand differences in the olfactory system between winged and wingless grain aphids, we constructed an antennal transcriptome from winged and wingless Sitobion avenae (Fabricius), one of the most serious pests of cereal fields worldwide. Among the 133,331 unigenes in the antennal assembly, 13 OBP and 5 CSP putative transcripts were identified with 6 OBP and 3 CSP sequences representing new S. avenae annotations. We used qPCR to examine the expression profile of these genes sets across S. avenae development and in various tissues. We found 7 SaveOBPs and 1 SaveCSP were specifically or significantly elevated in antennae compared with other tissues, and that some transcripts (SaveOBP8, SaveCSP2 and SaveCSP5) were abundantly expressed in the legs of winged or wingless aphids. The expression levels of the SaveOBPs and SaveCSPs varied depending on the developmental stage. Possible physiological functions of these genes are discussed. Further molecular and functional studies of these olfactory related genes will explore their potential as novel targets for controlling S. avenae. 10.1371/journal.pone.0161839
Identification and expression profile analysis of odorant binding protein and chemosensory protein genes in Bemisia tabaci MED by head transcriptome. Wang Ran,Li Fengqi,Zhang Wei,Zhang Xiaoman,Qu Cheng,Tetreau Guillaume,Sun Lujuan,Luo Chen,Zhou Jingjiang PloS one Odorant binding proteins (OBPs) and chemosensory proteins (CSPs) of arthropods are thought to be involved in chemical recognition which regulates pivotal behaviors including host choice, copulation and reproduction. In insects, OBPs and CSPs located mainly in the antenna but they have not been systematically characterized yet in Bemisia tabaci which is a cryptic species complex and could damage more than 600 plant species. In this study, among the 106,893 transcripts in the head assembly, 8 OBPs and 13 CSPs were identified in B. tabaci MED based on head transcriptomes of adults. Phylogenetic analyses were conducted to investigate the relationships of B. tabaci OBPs and CSPs with those from several other important Hemipteran species, and the motif-patterns between Hemiptera OBPs and CSPs were also compared by MEME. The expression profiles of the OBP and CSP genes in different tissues of B. tabaci MED adults were analyzed by real-time qPCR. Seven out of the 8 OBPs found in B. tabaci MED were highly expressed in the head. Conversely, only 4 CSPs were enriched in the head, while the other nine CSPs were specifically expressed in other tissues. Our findings pave the way for future research on chemical recognition of B. tabaci at the molecular level. 10.1371/journal.pone.0171739
Sublethal doses of neonicotinoid imidacloprid can interact with honey bee chemosensory protein 1 (CSP1) and inhibit its function. Li Hongliang,Tan Jing,Song Xinmi,Wu Fan,Tang Mingzhu,Hua Qiyun,Zheng Huoqing,Hu Fuliang Biochemical and biophysical research communications As a frequently used neonicotinoid insecticide, imidacloprid can impair the chemoreceptive behavior of honey bees even at sublethal doses, while the physiochemical mechanism has not been further revealed. Here, multiple fluorescence spectra, thermodynamic method, and molecular docking were used to study the interaction and the functional inhibition of imidacloprid to the recombinant CSP1 protein in Asian honey bee, Apis cerana. The results showed that the fluorescence intensity (λ = 332 nm) of CSP1 could be significantly quenched by imidacloprid in a dynamic mode. During the quenching process, ΔH > 0, ΔS > 0, indicating that the acting forces of imidacloprid with CSP1 are mainly hydrophobic interactions. Synchronous fluorescence showed that the fluorescence of CSP1 was mainly derived from tryptophan, and the hydrophobicity of tryptophan decreased with the increase of imidacloprid concentration. Molecular docking predicted the optimal pose and the amino acid composition of the binding process. Circular dichroism (CD) spectra showed that imidacloprid reduced the α-helix of CSP1 and caused the extension of the CSP1 peptide chain. In addition, the binding of CSP1 to floral scent β-ionone was inhibited by nearly 50% of the apparent association constant (K) in the presence of 0.28-2.53 ng/bee of imidacloprid, and the inhibition rate of nearly 95% at 3.75 ng/bee of imidacloprid at sublethal dose level. This study initially revealed the molecular physiochemical mechanism that sublethal doses of neonicotinoid still interact and inhibit the physiological function of the honey bees' chemoreceptive system. 10.1016/j.bbrc.2017.03.051
Differential expression of chemosensory-protein genes in midguts in response to diet of Spodoptera litura. Yi Xin,Qi Jiangwei,Zhou Xiaofan,Hu Mei Ying,Zhong Guo Hua Scientific reports While it has been well characterized that chemosensory receptors in guts of mammals have great influence on food preference, much remains elusive in insects. Insect chemosensory proteins (CSPs) are soluble proteins that could deliver chemicals to olfactory and gustatory receptors. Recent studies have identified a number of CSPs expressed in midgut in Lepidoptera insects, which started to reveal their roles in chemical recognition and stimulating appetite in midgut. In this study, we examined expression patterns in midgut of 21 Spodoptera litura CSPs (SlitCSPs) characterized from a previously reported transcriptome, and three CSPs were identified to be expressed highly in midgut. The orthologous relationships between midgut expressed CSPs in S. litura and those in Bombyx mori and Plutella xylostella also suggest a conserved pattern of CSP expression in midgut. We further demonstrated that the expression of midgut-CSPs may change in response to different host plants, and SlitCSPs could bind typical chemicals from host plant in vitro. Overall, our results suggested midgut expressed SlitCSPs may have functional roles, likely contributing to specialization and adaption to different ecosystems. Better knowledge of this critical component of the chemsensation signaling pathways in midguts may improve our understanding of food preference processes in a new perspective. 10.1038/s41598-017-00403-5
Molecular identification and expression patterns of odorant binding protein and chemosensory protein genes in (Lepidoptera: Noctuidae). Zhang Ya-Nan,Zhu Xiu-Yun,Ma Ji-Fang,Dong Zhi-Ping,Xu Ji-Wei,Kang Ke,Zhang Long-Wa PeerJ The olfaction system of insects plays an important role in mediating various physiological behaviors, including locating hosts, avoiding predators, and recognizing mates and oviposition sites. Therefore, some key genes in the system present valuable opportunities as targets for developing novel green pesticides. , a noctuid moth can feed on more than 30 different host plants making it a serious polyphagous pest worldwide, and it has become one of the major maize pests in northern China since 2011. However, there are no reports on effective and environmentally friendly pesticides for the control of this pest. In this study, we identified 28 genes encoding putative odorant binding proteins (OBPs) and 20 chemosensory protein (CSPs) genes based on our previous transcriptomic data. A tissue expression investigation and phylogenetic analysis were conducted in an effort to postulate the functions of these genes. Our results show that nearly half (46.4%) of the exhibited antennae-biased expression while many of the were highly abundant in non-antennal tissues. These results will aid in exploring the chemosensory mechanisms of and developing environmentally friendly pesticides against this pest in the future. 10.7717/peerj.3157
Identification of Candidate Odorant-Binding Protein and Chemosensory Protein Genes in Cyrtorhinus lividipennis (Hemiptera: Miridae), a Key Predator of the Rice Planthoppers in Asia. Wang Gui-Yao,Zhu Mu-Fei,Jiang Yan-Dong,Zhou Wen-Wu,Liu Su,Heong Kong Luen,Cheng Jiaan,Zhu Zeng-Rong Environmental entomology Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae) is an important predatory natural enemy of planthopper and leafhopper eggs in Asian rice paddy fields. Cyrtorhinus lividipennis is known to rely largely on herbivore-induced plant volatiles to identify eggs embedded in rice stem tissues for feeding and on pheromones for mating. However, exactly how C. lividipennis decode these chemical information is unclear. In most insects, the odorant-binding proteins (OBPs) and the chemosensory proteins (CSPs) are essential for seeking out food resources and mates. In this study, we identified 10 OBP and 5 CSP genes in C. lividipennis and investigated their expression patterns in various tissues of adult males and females by quantitative real-time PCR (qRT-PCR). Six OBP genes (ClivOBP1, 2, 4, 6, 9, and 10) were mainly expressed in the male antennae, whereas three genes (ClivOBP3, ClivOBP7, and ClivOBP8) had high expression in the female antennae. ClivCSP1 was predominantly expressed in the male antennae. These findings suggest that most ClivOBPs and ClivCSPs are likely involved in food-searching behavior. The recognition of the pheromone molecules provides the basis for further functional studies on the chemoreception system of C. lividipennis. 10.1093/ee/nvx075
A Chemosensory Protein Gene Si-CSP1 Associated With Necrophoric Behavior in Red Imported Fire Ants (Hymenoptera: Formicidae). Qiu Hua-Long,Cheng Dai-Feng Journal of economic entomology Necrophoric behavior is essential to colony health in social insects. Little is known about the genes that are responsible for necrophoric behavior. Here, we show that a chemosensory protein gene Si-CSP1 was expressed significantly higher in the antennae than in other tissues such as the legs and heads of Solenopsis invicta Buren workers. Furthermore, Si-CSP1-silenced workers moved significantly fewer corpses of their nestmates than normal workers. Finally, Si-CSP1-silenced workers exhibited weaker antennal responses to oleic acid and linoleic acid than controls. These results suggest that Si-CSP1 functions by sensing oleic acid and linoleic acid associated with dead colony members and regulating the necrophoric behavior of workers in S. invicta. 10.1093/jee/tox095
Identification of odorant-binding and chemosensory protein genes and the ligand affinity of two of the encoded proteins suggest a complex olfactory perception system in Periplaneta americana. He P,Li Z-Q,Zhang Y-F,Chen L,Wang J,Xu L,Zhang Y-N,He M Insect molecular biology The American cockroach (Periplaneta americana) is an urban pest with a precise chemosensory system that helps it achieve complex physiological behaviours, including locating food and mating. However, its chemosensory mechanisms have not been well studied. Here, we identified 71 putative odorant carrier protein genes in P. americana, including 57 new odorant-binding proteins (OBPs) and 11 chemosensory proteins (CSPs). To identify their physiological functions, we investigated their tissue expression patterns in antennae, mouthparts, legs, and the remainder of the body of both sexes, and determined that most of these genes were expressed in chemosensory organs. A phylogenetic tree showed that the putative pheromone-binding proteins of P. americana were in different clades from those of moths. Two genes, PameOBP24 and PameCSP7, were expressed equally in antennae of both sexes and highly expressed amongst the OBPs and CSPs. These genes were expressed in Escherichia coli and the resultant proteins were purified. The binding affinities of 74 common odorant compounds were tested with recombinant PameOBP24 and PameCSP7. Both proteins bound a variety of ligands. Our findings provide a foundation for future research into the chemosensory mechanisms of P. americana and help in identifying potential target genes for managing this pest. 10.1111/imb.12328
Identification of odorant binding proteins and chemosensory proteins in Microplitis mediator as well as functional characterization of chemosensory protein 3. Peng Yong,Wang Shan-Ning,Li Ke-Ming,Liu Jing-Tao,Zheng Yao,Shan Shuang,Yang Ye-Qing,Li Rui-Jun,Zhang Yong-Jun,Guo Yu-Yuan PloS one Odorant binding proteins (OBPs) and chemosensory proteins (CSPs) play important roles in transporting semiochemicals through the sensillar lymph to olfactory receptors in insect antennae. In the present study, twenty OBPs and three CSPs were identified from the antennal transcriptome of Microplitis mediator. Ten OBPs (MmedOBP11-20) and two CSPs (MmedCSP2-3) were newly identified. The expression patterns of these new genes in olfactory and non-olfactory tissues were investigated by real-time quantitative PCR (qPCR) measurement. The results indicated that MmedOBP14, MmedOBP18, MmedCSP2 and MmedCSP3 were primarily expressed in antennae suggesting potential olfactory roles in M. mediator. However, other genes including MmedOBP11-13, 15-17, 19-20 appeared to be expressed at higher levels in body parts than in antennae. Focusing on the functional characterization of MmedCSP3, immunocytochemistry and fluorescent competitive binding assays were conducted indoors. It was found that MmedCSP3 was specifically located in the sensillum lymph of olfactory sensilla basiconca type 2. The recombinant MmedCSP3 could bind several types of host insects odors and plant volatiles. Interestingly, three sex pheromone components of Noctuidae insects, cis-11-hexadecenyl aldehyde (Z11-16: Ald), cis-11-hexadecanol (Z11-16: OH), and trans-11-tetradecenyl acetate (E11-14: Ac), showed high binding affinities (Ki = 17.24-18.77 μM). The MmedCSP3 may be involved in locating host insects. Our data provide a base for further investigating the physiological roles of OBPs and CSPs in M. mediator, and extend the function of MmedCSP3 in chemoreception of M. mediator. 10.1371/journal.pone.0180775
Negative chemotaxis of Ralstonia pseudosolanacearum to maleate and identification of the maleate chemosensory protein. Tunchai Mattana,Hida Akiko,Oku Shota,Nakashimada Yutaka,Nikata Toshiyuki,Tajima Takahisa,Kato Junichi Journal of bioscience and bioengineering Ralstonia pseudosolanacearum Ps29 was repelled by maleate. Screening of a complete collection of Ps29 single-methyl-accepting chemotaxis protein (mcp) gene mutants identified the RSp0303 homolog (McpP) as a chemotaxis sensor mediating negative chemotaxis to maleate. Interestingly, the mcpP-deletion mutant was attracted to maleate, indicating that this bacterium expresses a MCP(s) for both positive and negative chemotaxis to maleate. We constructed a Ps29 derivative (designated POC14) harboring deletions in 14 individual mcp genes, including mcpP, to characterize McpP. Introduction of a plasmid harboring the mcpP gene (pPS16) restored the ability to negatively respond to maleate, confirming that McpP is a MCP for negative chemotaxis to maleate. We thought that maleate might be applied to controlling plant infection by R. pseudosolanacearum. To evaluate this possibility, we measured chemotactic responses of seven other virulent R. pseudosolanacearum strains to maleate. We confirmed that they harbored functional mcpP orthologues, but they showed no chemotactic responses to maleate. Quantitative RT-PCR analysis revealed that these seven R. pseudosolanacearum strains did not show negative chemotaxis to maleate because of negligible transcription of the mcpP genes. We compared the chemotactic responses of POC14 and POC14[pPS16] toward various chemicals and found that McpP senses inorganic phosphate as a chemoattractant. 10.1016/j.jbiosc.2017.07.002
Evolution, expression and association of the chemosensory protein genes with the outbreak phase of the two main pest locusts. Scientific reports We analyze the evolutionary relationships and expression patterns of the large set of genes for chemosensory proteins (CSPs) in the two main pest locusts. We used the available transcriptome and genome data to infer the number of genes using BLAST searches and sequence similarity matrices. Maximum likelihood phylogenies revealed the relationships between these CSPs and CSPs from several arthropods. RNAseq and qPCR allowed associating CSPs to locust phases. Crossing the phylogenetic and expression data allowed us to deduce homologies and conservation of the involvement in the phase change. We confirm that Locusta migratoria has at least 58 CSP gene copies, only five of which lack evidence of expression, and we reveal that Schistocerca gregaria has at least 42 expressed CSP genes. Both species share 21 orthologs, whereas 33 L. migratoria and 15 S. gregaria CSPs seem species-specific. Additional six S. gregaria and four L. migratoria CSPs seem duplications. Although the expression profiles are not especially conserved, seven orthologous CSP pairs share a gregarious over-expression pattern in adult locusts. We thus confirm that the number of locusts' CSPs is large, due to gene duplications during the evolution of Orthoptera, we establish sequence and potential functional homologies, and we highlight specific CSPs that appear to be involved in locust gregariousness either in general or in a species-specific manner. 10.1038/s41598-017-07068-0
Comparative genomics of chemosensory protein genes (CSPs) in twenty-two mosquito species (Diptera: Culicidae): Identification, characterization, and evolution. Mei Ting,Fu Wen-Bo,Li Bo,He Zheng-Bo,Chen Bin PloS one Chemosensory proteins (CSP) are soluble carrier proteins that may function in odorant reception in insects. CSPs have not been thoroughly studied at whole-genome level, despite the availability of insect genomes. Here, we identified/reidentified 283 CSP genes in the genomes of 22 mosquitoes. All 283 CSP genes possess a highly conserved OS-D domain. We comprehensively analyzed these CSP genes and determined their conserved domains, structure, genomic distribution, phylogeny, and evolutionary patterns. We found an average of seven CSP genes in each of 19 Anopheles genomes, 27 CSP genes in Cx. quinquefasciatus, 43 in Ae. aegypti, and 83 in Ae. albopictus. The Anopheles CSP genes had a simple genomic organization with a relatively consistent gene distribution, while most of the Culicinae CSP genes were distributed in clusters on the scaffolds. Our phylogenetic analysis clustered the CSPs into two major groups: CSP1-8 and CSE1-3. The CSP1-8 groups were all monophyletic with good bootstrap support. The CSE1-3 groups were an expansion of the CSP family of genes specific to the three Culicinae species. The Ka/Ks ratios indicated that the CSP genes had been subject to purifying selection with relatively slow evolution. Our results provide a comprehensive framework for the study of the CSP gene family in these 22 mosquito species, laying a foundation for future work on CSP function in the detection of chemical cues in the surrounding environment. 10.1371/journal.pone.0190412
Sex- and Tissue-Specific Expression Profiles of Odorant Binding Protein and Chemosensory Protein Genes in (Diptera: Sciaridae). Frontiers in physiology is an agricultural pest insect affecting the production of Chinese chive and other liliaceous vegetables in China, and it is significantly attracted by sex pheromones and the volatiles derived from host plants. Despite verification of this chemosensory behavior, however, it is still unknown how recognizes these volatile compounds on the molecular level. Many of odorant binding proteins (OBPs) and chemosensory proteins (CSPs) play crucial roles in olfactory perception. Here, we identified 49 OBP and 5 CSP genes from the antennae and body transcriptomes of female and male adults of , respectively. Sequence alignment and phylogenetic analysis among Dipteran OBPs and CSPs were analyzed. The sex- and tissue-specific expression profiles of 54 putative chemosensory genes among different tissues were investigated by quantitative real-time PCR (qRT-PCR). qRT-PCR analysis results suggested that 22 OBP and 3 CSP genes were enriched in the antennae, indicating they might be essential for detection of general odorants and pheromones. Among these antennae-enriched genes, nine OBPs () were enriched in the male antennae and may play crucial roles in the detection of sex pheromones. Moreover, some OBP and CSP genes were enriched in non-antennae tissues, such as in the legs ( and ), wings (), abdomens and thoraxes (), and heads ( and ), suggesting that these genes might be involved in olfactory, gustatory, or other physiological processes. Our findings provide a starting point to facilitate functional research of these chemosensory genes in at the molecular level. 10.3389/fphys.2018.00107
Identification of an Alarm Pheromone-Binding Chemosensory Protein From the Invasive Sycamore Lace Bug (Say). Li Fengqi,Fu Ningning,Li Du,Chang Hetang,Qu Cheng,Wang Ran,Xu Yihua,Luo Chen Frontiers in physiology The spread of the exotic insect pest sycamore lace bug (Say) is increasing worldwide. The identification of behaviorally active compounds is crucial for reducing the current distribution of this pest. In this study, we identified and documented the expression profiles of genes encoding chemosensory proteins (CSPs) in the sycamore lace bug to identify CSPs that bind to the alarm pheromone geraniol. One CSP () that was highly expressed in nymph antennae was found to bind geraniol with high affinity. This finding was confirmed by fluorescence competitive binding assays. We further discovered one candidate chemical, phenyl benzoate, that bound to CcilCSP2 with even higher affinity than geraniol. Behavioral assays revealed that phenyl benzoate, similar to geraniol, significantly repelled sycamore lace bug nymphs but had no activity toward adults. This study has revealed a novel repellent compound involved in behavioral regulation. And, our findings will be beneficial for understanding the olfactory recognition mechanism of sycamore lace bug and developing a push-pull system to manage this pest in the future. 10.3389/fphys.2018.00354
Silencing of Chemosensory Protein Gene NlugCSP8 by RNAi Induces Declining Behavioral Responses of . Waris Muhammad I,Younas Aneela,Ul Qamar Muhammad T,Hao Liu,Ameen Asif,Ali Saqib,Abdelnabby Hazem Elewa,Zeng Fang-Fang,Wang Man-Qun Frontiers in physiology Chemosensory proteins (CSPs) play imperative functions in chemical and biochemical signaling of insects, as they distinguish and transfer ecological chemical indications to a sensory system in order to initiate behavioral responses. The brown planthopper (BPH), Stål (Hemiptera: Delphacidae), has emerged as the most destructive pest, causing serious damage to rice in extensive areas throughout Asia. Biotic characteristics like monophagy, dual wing forms, and annual long-distance migration imply a critical role of chemoreception in . In this study, we cloned the full-length CSP8 gene from . Protein sequence analysis indicated that NlugCSP8 shared high sequence resemblance with the CSPs of other insect family members and had the typical four-cysteine signature. Analysis of gene expression indicated that NlugCSP8 mRNA was specifically expressed in the wings of mated 3-day brachypterous females with a 175-fold difference compare to unmated 3-day brachypterous females. The NlugCSP8 mRNA was also highly expressed in the abdomen of unmated 5-day brachypterous males and correlated to the age, gender, adult wing form, and mating status. A competitive ligand-binding assay demonstrated that ligands with long chain carbon atoms, nerolidol, hexanal, and trans-2-hexenal were able to bind to NlugCSP8 in declining order of affinity. By using bioinformatics techniques, three-dimensional protein structure modeling and molecular docking, the binding sites of NlugCSP8 to the volatiles which had high binding affinity were predicted. In addition, behavioral experiments using the compounds displaying the high binding affinity for the NlugCSP8, revealed four compounds able to elicit significant behavioral responses from . The functions of NlugCSP8 were further confirmed through the testing of RNAi and post-RNAi behavioral experiments. The results revealed that reduction in NlugCSP8 transcript abundance caused a decrease in behavioral response to representative attractants. An enhanced understanding of the NlugCSP8 is expected to contribute in the improvement of more effective and eco-friendly control strategies of BPH. 10.3389/fphys.2018.00379
Combinatorial multispectral, thermodynamics, docking and site-directed mutagenesis reveal the cognitive characteristics of honey bee chemosensory protein to plant semiochemical. Tan Jing,Song Xinmi,Fu Xiaobin,Wu Fan,Hu Fuliang,Li Hongliang Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy In the chemoreceptive system of insects, there are always some soluble binding proteins, such as some antennal-specific chemosensory proteins (CSPs), which are abundantly distributed in the chemosensory sensillar lymph. The antennal-specific CSPs usually have strong capability to bind diverse semiochemicals, while the detailed interaction between CSPs and the semiochemicals remain unclear. Here, by means of the combinatorial multispectral, thermodynamics, docking and site-directed mutagenesis, we detailedly interpreted a binding interaction between a plant semiochemical β-ionone and antennal-specific CSP1 from the worker honey bee. Thermodynamic parameters (ΔH < 0, ΔS > 0) indicate that the interaction is mainly driven by hydrophobic forces and electrostatic interactions. Docking prediction results showed that there are two key amino acids, Phe44 and Gln63, may be involved in the interacting process of CSP1 to β-ionone. In order to confirm the two key amino acids, site-directed mutagenesis were performed and the binding constant (K) for two CSP1 mutant proteins was reduced by 60.82% and 46.80% compared to wild-type CSP1. The thermodynamic analysis of mutant proteins furtherly verified that Phe44 maintained an electrostatic interaction and Gln63 contributes hydrophobic and electrostatic forces. Our investigation initially elucidates the physicochemical mechanism of the interaction between antennal-special CSPs in insects including bees to plant semiochemicals, as well as the development of twice thermodynamic analysis (wild type and mutant proteins) combined with multispectral and site-directed mutagenesis methods. 10.1016/j.saa.2018.04.074
Identification and tissue distribution of chemosensory protein and odorant binding protein genes in Tropidothorax elegans Distant (Hemiptera: Lygaeidae). Song Yue-Qin,Sun Hui-Zhong,Du Jun Scientific reports Tropidothorax elegans Distant (Hemiptera: Lygaeidae) is an insect pest that inflicts damage to vegetables and flowering plants across China. The olfactory system regulates insect behavior, such as feeding, mating, oviposition and predator avoidance. Odorant-binding proteins (OBPs) and the chemosensory proteins (CSPs) are two groups of small soluble proteins that initiate olfactory signal transduction in insects. In this study, we generated antennal transcriptomes of male and female T. elegans, and identified 19 putative OBP (14 classic OBPs and five plus-C OBPs) and seven CSP genes. Through real-time quantitative PCR analysis, we found that 14 of the 19 OBP genes were highly expressed in the antennae of both adult females and males, and 3 OBP genes were expressed higher in the antennae of males than females. Some OBP genes were also highly expressed in the legs or wings. Three CSP genes were highly expressed in the antennae of both sexes, and TeleCSP7 showed higher expression in male antennae compare to females. Interestingly, one CSP gene, TeleCSP2, was expressed in all olfactory tissues. Our results provide molecular insights into further investigating of the olfactory system of an important plant pest, T. elegans. 10.1038/s41598-018-26137-6
Functional Analysis of the Chemosensory Protein MsepCSP8 From the Oriental Armyworm . Frontiers in physiology Chemosensory proteins (CSPs) play important roles in chemosensation in insects, but their exact physiological functions remain elusive. In order to investigate the functions of CSPs in the oriental armyworm , in the present study we explored expression patterns and binding characteristics of the CSP, MsepCSP8. The distinctive functions of MsepCSP8 were also validated by RNAi. The results showed that MsepCSP8 shares high sequence similarity with CSPs of other insect family members, including the characteristic four-cysteine signature motif. MsepCSP8 mRNA was specifically expressed in antennae of females at levels well above those in other tissues. Competitive binding assays confirmed that 20 out of 56 ligands bound more strongly to MsepCSP8 at pH 7.4 than at pH 5.0. Protein structure modeling and molecular docking analyses identified amino acid residues involved in binding volatile compounds, and behavioral response experiments showed that elicited significant responses to five volatiles from compounds displaying high binding affinity to MsepCSP8. MsepCSP8 transcript abundance was decreased by dsMsepCSP8 injection, which affected the behavioral responses of to representative semiochemicals. Our findings demonstrate that MsepCSP8 likely contributes to mediating responses of adults to plant volatiles. 10.3389/fphys.2018.00872
Binding affinity characterization of an antennae-enriched chemosensory protein from the white-backed planthopper, Sogatella furcifera (Horváth), with host plant volatiles. Chen Guang-Lei,Pan Yu-Feng,Ma Yun-Feng,Wang Jun,He Ming,He Peng Pesticide biochemistry and physiology The white-backed planthopper (WBPH) Sogatella furcifera is a notorious rice pest in Asia. Olfaction is crucial for the WBPH to seek and locate rice plants. However, its mechanism is still not fully understood. Chemosensory proteins (CSPs) are some of the important olfactory-related proteins. In this study, we first used a bacterial system to successfully express the recombinant, antennae-enriched protein SfurCSP5. Further, competitive fluorescence binding assays with 86 candidate ligands, including some known rice plant volatiles, showed that SfurCSP5 has high affinities for 2-tridecanone, 2-pentadecanone, and β-ionone, which are known to be present in volatile mixtures that can attract rice planthoppers, and produced Ki values of 4.89, 4.09, and 1.39 μmol/L, respectively. Additionally, homology modeling of the protein structure of SfurCSP5 showed that it possesses five α-helixes (α-1, α-2, α-3, α-4, and α-5), which is a non-typical feature of the insect CSPs. Finally, ligand docking results revealed that Leu-44, Ile-64, Phe-90, Trp-98, and Phe-101 are five hydrophobic residues that interact with all of the ligands, indicating their key involvement in the binding of SfurCSP5. Our study lays the foundation for an understanding of the olfaction mechanism of rice planthoppers. 10.1016/j.pestbp.2018.09.006
A chemosensory protein MsepCSP5 involved in chemoreception of oriental armyworm . Younas Aneela,Waris Muhammad Irfan,Chang Xiang-Qian,Shaaban Muhammad,Abdelnabby Hazem,Ul Qamar Muhammad Tahir,Wang Man-Qun International journal of biological sciences Chemosensory proteins (CSPs) have been suggested to perform several functions in insects, including chemoreception. To find out whether MsepCSP5 identified from shows potential physiological functions in olfaction, gene expression profiles, ligand-binding experiments, molecular docking, RNA interference, and behavioral test were performed. Results showed that was highly expressed in female antennae. MsepCSP5 showed high binding affinities to a wide range of host-related semiochemicals, and displayed that 26 out of 35 candidate volatiles were highly bound (Ki < 10 µM) at pH 5.0 rather than pH 7.4. The binding sites of MsepCSP5 to candidate volatiles were well predicted by three-dimensional structure modeling and molecular docking experiments. Pursuing further, biological activities of to highly bound compounds elicited strong behavioral responses, such as alcoholic compounds displayed strong attractiveness whereas terpenes showed repellency to . The transcript expression level of MsepCSP5 gene significantly decreased after injecting target dsRNAs, and resulted in non-significant preference responses of to semiochemicals, such as 3-pentanol and 1-octene-3-ol. In conclusion, MsepCSP5 may involve in semiochemical reception of 10.7150/ijbs.27315
The role of chemosensory protein 10 in the detection of behaviorally active compounds in brown planthopper, Nilaparvata lugens. Waris Muhammad Irfan,Younas Aneela,Adeel Muhammad Muzammal,Duan Shuang-Gang,Quershi Sundas Rana,Kaleem Ullah Rana Muhammad,Wang Man-Qun Insect science Chemosensory proteins (CSPs) play important roles in insects' chemoreception, although their specific functional roles have not been fully elucidated. In this study, we conducted the developmental expression patterns and competitive binding assay as well as knock-down assay by RNA interference both in vitro and in vivo to reveal the function of NlugCSP10 from the brown planthopper (BPH), Nilaparvata lugens (Stål), a major pest in rice plants. The results showed that NlugCSP10 messenger RNA was significantly higher in males than in females and correlated to gender, development and wing forms. The fluorescence binding assays revealed that NlugCSP10 exhibited the highest binding affinity with cis-3-hexenyl acetate, eicosane, and (+)-β-pinene. Behavioral assay revealed that eicosane displayed attractant activity, while cis-3-hexenyl acetate, similar to (+)-β-pinene significantly repelled N. lugens adults. Silencing of NlugCSP10, which is responsible for cis-3-hexenyl acetate binding, significantly disrupted cis-3-hexenyl acetate communication. Overall, findings of the present study showed that NlugCSP10 could selectively interrelate with numerous volatiles emitted from host plants and these ligands could be designated to develop slow-release mediators that attract/repel N. lugens and subsequently improve the exploration of plans to control this insect pest. 10.1111/1744-7917.12659
Functional Analysis of the Chemosensory Protein GmolCSP8 From the Oriental Fruit Moth, (Busck) (Lepidoptera: Tortricidae). Li Guang-Wei,Chen Xiu-Lin,Chen Li-Hui,Wang Wen-Qiang,Wu Jun-Xiang Frontiers in physiology Chemosensory proteins (CSPs) belong to a family of small water-soluble proteins that can selectively bind and transport odorant molecules for olfactory communication in insects. To date, their definite physiological functions in olfaction remain controversial when compared with odorant binding proteins (OBPs). To investigate the functions of CSPs in the oriental fruit moth , we determined the tissue expression patterns and binding properties of the CSP, GmolCSP8. The key binding sites of GmolCSP8 with a representative ligand were evaluated using molecular flexible docking, site-directed mutagenesis and ligand-binding experiments. Multiple sequence alignment and phylogenetic analysis showed that GmolCSP8 possesses a typical conserved four cysteines motif and shares high sequence identity with some CSP members of other Lepidopteran insects. GmolCSP8 was predominantly expressed in the wings and antennae of both male and female adults and may be involve in contact chemoreception. Recombinant GmolCSP8 (rGmolCSP8) exhibited specific-binding affinities to small aliphatic alcohols (C4-12) and had the strongest binding affinity to 1-hexanol. The three-dimensional structure of GmolCSP8 was constructed using the structure of sgCSP4 as a template. Site-directed mutagenesis and ligand-binding experiments confirmed that Thr27 is the key binding site in GmolCSP8 for 1-hexanol binding, because this residue can form hydrogen bond with the oxygen atom of the hydroxyl group in 1-hexanol, and Leu30 may play an important role in binding to 1-hexanol. We found that pH significantly affected the binding affinities of rGmolCSP8 to ligand, revealing that ligand-binding and -release by this protein is related to a pH-dependent conformational transition. Based on these results, we infer that GmolCSP8 may participate in the recognition and transportation of 1-hexanol and other small aliphatic alcohols. 10.3389/fphys.2019.00552
Mechanistic insight into binding interaction between chemosensory protein 4 and volatile larval pheromones in honeybees (Apis mellifera). Wu Fan,Feng Yilu,Han Bin,Hu Han,Feng Mao,Meng Lifeng,Ma Chuan,Yu Linsheng,Li Jianke International journal of biological macromolecules Honeybees communicate with members of their intra-species via pheromones. The volatile pheromones, β-ocimene and allo-ocimene, are the primary signals of larvae to beg for the care from the nurses. Of the odorant binding proteins (OBPs)/chemosensory proteins (CSPs), CSP4 has the best affinity with β-ocimene and allo-ocimene. To reveal the binding mechanism of CPS4 with them, fluorescent quenching, UV absorption spectra, circular dichroism (CD) spectra, isothermal titration calorimetry (ITC), molecular docking, molecular dynamic (MD) simulation, and site-directed mutagenesis were applied. The quenching constant Ksv decreased with temperature increase, and the interaction distance was 2.73 nm and 2.43 nm (<10 nm), indicating that β-ocimene and allo-ocimene could form stable complexes with CSP4. The observed △H < 0 and △S > 0 of thermodynamics suggest the main driving forces are electrostatic or hydrophobic force. All above thermodynamics findings are in line with the results of ITC experiments. Furthermore, molecular docking, MD simulation and site-directed mutagenesis indicate the binding cavities are located at cavity 1 in C-terminal of CSP4, where Tyr98 and Asp67 are vital amino acids in maintaining the stable form of protein and larval pheromones, and electrostatic energies are the main driving forces. Our findings gain novel insight into the binding mechanism of chemosensory protein with volatile larval pheromones and are important for understanding olfactory interaction of honeybees. 10.1016/j.ijbiomac.2019.09.041
, a Chemosensory Protein Expressed Specifically by Ovary, Mediates Reproduction in (Coleoptera: Chrysomelidae). Ma Chao,Cui Shaowei,Tian Zhenya,Zhang Yan,Chen Guangmei,Gao Xuyuan,Tian Zhenqi,Chen Hongsong,Guo Jianying,Zhou Zhongshi Frontiers in physiology Chemosensory proteins (CSPs) are considered to be the transporter linking odorant chemicals and receptors on sensory neurons. However, the extensive expression patterns of CSPs in insects suggest that CSPs are also involved in other physiological processes; the range of their functions, however, remains uncertain. In this study, we successfully characterized and cloned the CSP12 of (). The open reading frame of encodes 131 amino acids, with four conserved cysteine residues. The expression patterns of validated by quantitative real-time PCR (qRT-PCR) showed that is specifically expressed in female ovary. Furthermore, compared with the control treatment, silencing resulted in significantly reduced oviposition in females. Surprisingly, the knock-down rate of exceeded 95% and remained depressed for more than 15 days, indicating that RNA interference (RNAi) was a suitable method for exploring the function of CSP12 in These findings increase our understanding of the expression profile and function of the CSP gene family in insects. 10.3389/fphys.2019.01290