logo logo
Clearance of Dying Cells by Phagocytes: Mechanisms and Implications for Disease Pathogenesis. Advances in experimental medicine and biology The efficient clearance of apoptotic cells is an evolutionarily conserved process crucial for homeostasis in multicellular organisms. The clearance involves a series of steps that ultimately facilitates the recognition of the apoptotic cell by the phagocytes and the subsequent uptake and processing of the corpse. These steps include the phagocyte sensing of "find-me" signals released by the apoptotic cell, recognizing "eat-me" signals displayed on the apoptotic cell surface, and then intracellular signaling within the phagocyte to mediate phagocytic cup formation around the corpse and corpse internalization, and the processing of the ingested contents. The engulfment of apoptotic cells by phagocytes not only eliminates debris from tissues but also produces an anti-inflammatory response that suppresses local tissue inflammation. Conversely, impaired corpse clearance can result in loss of immune tolerance and the development of various inflammation-associated disorders such as autoimmunity, atherosclerosis, and airway inflammation but can also affect cancer progression. Recent studies suggest that the clearance process can also influence antitumor immune responses. In this review, we will discuss how apoptotic cells interact with their engulfing phagocytes to generate important immune responses, and how modulation of such responses can influence pathology. 10.1007/978-3-319-39406-0_2
Efferocytosis in the tumor microenvironment. Werfel Thomas A,Cook Rebecca S Seminars in immunopathology Within the course of a single minute, millions of cells in the human body will undergo programmed cell death in response to physiological or pathological cues. The diminished energetic capacity of an apoptotic cell renders the cell incapable of sustaining plasma membrane integrity. Under these circumstances, intracellular contents that might leak into the surrounding tissue microenvironment, a process referred to as secondary necrosis, could induce inflammation and tissue damage. Remarkably, in most cases of physiologically rendered apoptotic cell death, inflammation is avoided because a mechanism to swiftly remove apoptotic cells from the tissue prior to their secondary necrosis becomes activated. This mechanism, referred to as efferocytosis, uses phagocytes to precisely identify and engulf neighboring apoptotic cells. In doing so, efferocytosis mantains tissue homeostasis that would otherwise be disrupted by normal cellular turnover and exacerbated further when the burden of apoptotic cells becomes elevated due to disease or insult. Efferocytosis also supports the resolution of inflammation, restoring tissue homesostasis. The importance of efferocytosis in health and disease underlies the increasing research efforts to understand the mechanisms by which efferocytosis occurs, and how a failure in the efferocytic machinery contributes to diseases, or conversely, how cancers effectively use the existing efferocytic machinery to generate a tumor-tolerant, immunosuppressive tumor microenvironment. We discuss herein the molecular mechanisms of efferocytosis, how the process of efferocytosis might support a tumor 'wound healing' phenotype, and efforts to target efferocytosis as an adjunct to existing tumor treatments. 10.1007/s00281-018-0698-5
Apoptotic cell clearance in the tumor microenvironment: a potential cancer therapeutic target. Shin Seong-Ah,Moon Sun Young,Park Daeho,Park Jong Bae,Lee Chang Sup Archives of pharmacal research Millions of cells in the human body undergo apoptosis not only under normal physiological conditions but also under pathological conditions such as infection or other diseases related to acute tissue injury. Swift apoptotic cell clearance is essential for tissue homeostasis. Defective clearance of dead cells is linked to pathogenesis of diseases such as inflammatory diseases, atherosclerosis, neurological disease, and cancer. Significance of apoptotic cell clearance has been emerging as an interesting field for disease treatment. Efficient apoptotic cell clearance plays an important role in reducing inflammation through the suppression of inappropriate inflammatory responses under healthy and diseased conditions. However, apoptotic cell clearance related to cancer pathogenesis is more complex in tumor microenvironments. Chronic inflammation resulting from the failure of apoptotic cell clearance can contribute to tumor progression. Conversely, tumor cells can exploit the anti-inflammatory effect of apoptotic cell clearance to generate an immunosuppressive tumor microenvironment. In this review, focus is on the current understanding of apoptotic cell clearance in the tumor microenvironment. Furthermore, we discuss how signaling molecules (PtdSer and PtdSer recognition receptor) mediating apoptotic cell clearance are aberrantly expressed in the tumor microenvironment and their current development state as potential therapeutic targets for clinical cancer therapy. 10.1007/s12272-019-01169-2