加载中

    Modification effects of SanWei GanJiang Powder on liver and intestinal damage through reversing bile acid homeostasis. Li Na,Wang Bijun,Wu Yuhuan,Luo Xia,Chen Zhengyuan,Sang Chuanlan,Xiong Tianqin Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie BACKGROUND:Sanwei Ganjiang Powder (SWGJ), derived from traditional Chinese medicine (TCM), has long demonstrated its effectiveness in long-term liver damage therapy. Recent studies indicated that it can also regulate the intestinal tract, although the underlying molecular mechanisms of this remain mysterious. The aim of the study is to investigate the mechanisms of SWGJ against dysbacteriosis and carbon tetrachloride (CCl)-induced gut-liver axis damage underlying bile acid enterohepatic circulation. METHODS:To observe the regulatory effects of SWGJ on Liver and Intestinal Damage, we explored two animal models. In model 1, sixty BALB/c mice were subjected to oral gavage with 12 g/kg of ceftriaxone sodium for 10d; during this time, SWGJ, bifendate and bifico were sequentially administered over 7d. In model 2, the model of chronic liver injury was induced by subcutaneous injection of 40% CCl oil solution twice per week for 8 weeks. From the 3rd week, SWGJ, bifendate and bifico were sequentially administered for 6 weeks. Intestinal flora (16S rDNA analysis), histology (H&E staining), tight connections (Immunohistochemistry, IHC), ultrastructure (Transmission electron microscopy, TEM), inflammatory cytokines and LPS (Enzyme-linked immunosorbent assay, ELISA) of the intestines were assessed, and liver function was also evaluated by methods including ALT, AST and H&E staining. The levels of protein associated with bile acid metabolism were assessed by western blot. RESULTS:In model 1, SWGJ significantly decreased the activity of inflammatory cytokines and LPS compared with the ceftriaxone sodium group. In addition, SWGJ improved symptoms of intestinal flora imbalance; further, ZO-1 and occludin in the cytoplasm of intestinal villus epithelial cells was increased, and the histopathology of the ileum was improved. Notably, the expression of ALT and AST was significant increased, and disordered hepatic lobule structures were clearly observed in liver histopathology in model group; SWGJ can significantly improve these changes. Furthermore, the levels of proteins related to bile acid synthesis, such as CYP7A1, were significantly upregulated in the SWGJ group compared with the model, and proteins related to excretion and reabsorption, such as NTCP, Mrp2 and BESP, were also upregulated. Importantly, SWGJ increased the nuclear expression of nuclear factor-E2-related factor-2 (Nrf2). Similar results appeared in model 2. CONCLUSION:This study suggests that SWGJ may elicit significant effects on the treatment of gut-liver axis damage, potential mechanisms at least partially involve bile acid enterohepatic, and increasing of the nuclear Nrf2 levels. 10.1016/j.biopha.2019.109044
    Promotion of classic neutral bile acids synthesis pathway is responsible for cholesterol-lowing effect of Si-miao-yong-an decoction: Application of LC-MS/MS method to determine 6 major bile acids in rat liver and plasma. Liu Ziying,Zhang Yu,Zhang Ruowen,Gu Liqiang,Chen Xiaohui Journal of pharmaceutical and biomedical analysis Si-miao-yong-an decoction (SMYAD), a traditional Chinese medicine formula, significantly reduced plasma TC, LDL-c levels and increased HDL-c level in hyperlipidemia rats. Liver function test and tissue section examination indicated that SMYAD improved liver function and reduced fat accumulation in hyperlipidemia rat liver. A LC-MS/MS method was established and well validated to evaluate major bile acids derived from cholesterol metabolism through the classic neutral pathway and the alternative acidic pathway (cholic acid, chenodeoxycholic acid and their taurine and glycine conjugates) in liver and plasma. Increased total 6 bile acids concentrations in both liver and plasma were observed after oral administration of 12g/kg/d, 24g/kg/d and 36g/kg/d of SMYAD in a dose dependent manner which contributed to eliminate of cholesterol. Cholic acid, taurocholic acid and glycocholic acid act as the main products of bile acid classic neutral synthesis pathway and show sharp increase (p<0.01) after treatment of SMYAD at dosage of 24-36g/kg/d. For liver samples, taurocholic acid level act as the largest growth section, while in plasma samples, cholic acid act as the largest growth section after SMYAD treatment, compared with Model group. By contrast, the main products of alternative acidic pathway (chenodeoxycholic acid and its glycine and taurine conjugates) show no significant increase after treatment of SMYAD. In conclusion, the cholesterol lowing effect of SMYAD may be related with the accelerated transformation of cholesterol into bile acids through the classic neutral pathway. 10.1016/j.jpba.2016.12.021
    [Progress in application of bile acid metabolism in traditional Chinese medicine study]. Ju Yong-Hui,Yao Wei-Feng,Zhang Li Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica Traditional Chinese medicine boasts aunique theoretical system and rich practical experience. However, traditional Chinese medicine has an unclear material basis, vague pharmacological mechanism, and potential toxicity, which is the key factor to hinder its modernization and wide application. Therefore, when the physico-chemical analysis of chemical components of traditional Chinese medicine is insufficient to reflect the characteristics and mechanisms, the multi-target biological system correlation analysis in conformity to the holistic view of the basic theory of traditional Chinese medicine has gradually attracted wide attention. Specifically, bile acids, as an important endogenous metabolite in the body, play an important role in regulating digestion, absorption and metabolism of nutrients, and greatly impact the health. In recent years, a number of studies have been made on the metabolism pathway of bile acids and their important regulatory effects in body metabolism, making bile acids as a significant target of traditional Chinese medicine on the body. In view of this, based on bile acid metabolism, the paper reviewed the biological functions of bile acids in regulating body metabolism and its interaction with intestinal microbiota, providing a basis for exploring the connotation of bile acid metabolism changes under physiological/pathological conditions of the body. The study progress of bile acid metabolism in traditional Chinese medicine efficacy/toxic mechanism is further reviewed, which provides a basis for exploring the efficacy and hepatotoxicity mechanism of traditional Chinese medicine with bile acid as a biomarker, thereby laying a foundation for the clinical safety of traditional Chinese medicine. 10.19540/j.cnki.cjcmm.20200221.301
    Bile acid-induced proliferation of a human colon cancer cell line is mediated by transactivation of epidermal growth factor receptors. Cheng Kunrong,Raufman Jean-Pierre Biochemical pharmacology Although epidemiological studies indicate an association between elevations in fecal bile acids and the development of colorectal cancer, the cellular mechanism for the proliferative actions of bile acids is not clear. Studies from other laboratories indicate a paradoxical pro-apoptotic action of bile acids on cell culture lines. Our previous studies indicate that cholinergic agonist-induced proliferation of colon cancer cells that express M3 muscarinic receptors (M3R) is mediated by transactivation of the epidermal growth factor receptor (EGFR) and that bile acids stimulate proliferation of colon cancer cells that express M3R. In the present study, we investigated the effects of bile acids on cell signaling and proliferation of a human colon cancer cell line (H508 cells) that abundantly expresses M3R and EGFR. Treatment with taurine and glycine conjugates of lithocholic and deoxycholic acids stimulated reversible activation of the p44/42 MAP kinase signaling cascade and proliferation of H508 cells. Bile acids did not stimulate proliferation of SNU-C4 colon cancer cells that express EGFR but not muscarinic receptors. Atropine, a muscarinic receptor inverse agonist, blocked bile acid-induced H508 cell proliferation. At concentrations that stimulate cell proliferation, conjugated bile acids did not activate caspase-3, a key mediator of apoptosis. Conjugated bile acids stimulated phosphorylation of EGFR Tyr992, thereby implicating EGFR transactivation in the cellular mechanism underlying their proliferative actions. This was confirmed by observing that inhibitors of EGFR activation and antibodies to the ligand-binding domain of EGFR blocked both the signaling and proliferative actions of bile acids. Collectively, these results suggest that in this colon cancer cell line, bile acid-induced colon cancer cell proliferation is M3R-dependent and is mediated by transactivation of EGFR. 10.1016/j.bcp.2005.07.023
    Secondary bile acids: an underrecognized cause of colon cancer. Ajouz Hana,Mukherji Deborah,Shamseddine Ali World journal of surgical oncology Bile acids were first proposed as carcinogens in 1939. Since then, accumulated evidence has linked exposure of cells of the gastrointestinal tract to repeated high physiologic levels of bile acids as an important risk factor for gastrointestinal cancers. High exposure to bile acids may occur in a number of settings, but most importantly, is prevalent among individuals who have a high dietary fat intake. A rapid effect on cells of high bile acid exposure is the generation of reactive oxygen species and reactive nitrogen species, disruption of the cell membrane and mitochondria, induction of DNA damage, mutation and apoptosis, and development of reduced apoptosis capability upon chronic exposure. Here, we review the substantial evidence of the mechanism of secondary bile acids and their role in colon cancer. 10.1186/1477-7819-12-164
    Carcinogenicity of deoxycholate, a secondary bile acid. Bernstein Carol,Holubec Hana,Bhattacharyya Achyut K,Nguyen Huy,Payne Claire M,Zaitlin Beryl,Bernstein Harris Archives of toxicology High dietary fat causes increased bile acid secretion into the gastrointestinal tract and is associated with colon cancer. Since the bile acid deoxycholic acid (DOC) is suggested to be important in colon cancer etiology, this study investigated whether DOC, at a high physiologic level, could be a colon carcinogen. Addition of 0.2% DOC for 8-10 months to the diet of 18 wild-type mice induced colonic tumors in 17 mice, including 10 with cancers. Addition of the antioxidant chlorogenic acid at 0.007% to the DOC-supplemented diet significantly reduced tumor formation. These results indicate that a high fat diet in humans, associated with increased risk of colon cancer, may have its carcinogenic potential mediated through the action of bile acids, and that some dietary anti-oxidants may ameliorate this carcinogenicity. 10.1007/s00204-011-0648-7
    Bile acids and colon cancer: Solving the puzzle with nuclear receptors. Degirolamo Chiara,Modica Salvatore,Palasciano Giuseppe,Moschetta Antonio Trends in molecular medicine Colorectal cancer is the third most common malignancy worldwide and is often linked to obesity, a sedentary lifestyle, carbohydrate- and fat-rich diets and elevated fecal excretion of secondary bile acids. Accumulation of toxic bile acids triggers oxidative damage, mitochondrial dysfunction and tumor progression. Nuclear receptors are transcription factors crucially involved in the regulation of bile acid metabolism and detoxification, and their activation may confer protection from bile acid tumor-promoting activity. In this review, we explore the tangled relationships among bile acids, nuclear receptors and the intestinal epithelium, with particular emphasis on the role of the farnesoid X receptor in colorectal cancer prevention and on novel nuclear receptor-based approaches to expand the portfolio of chemotherapeutic agents. 10.1016/j.molmed.2011.05.010
    Diet, lipids and colon cancer. Choi Songhwa,Snider Ashley J International review of cell and molecular biology Dietary fat is digested and absorbed in the small intestine and can then be utilized as an energy source and/or as a reservoir for other bioactive lipid species. Excessive dietary fat has been implicated in the induction and/or aggravation of several diseases, including colorectal cancer (CRC). Diets with high fat content have been shown to exacerbate CRC through regulation of intestinal inflammation and proliferation, as well as alteration of bile acid pools, microbiota, and bioactive lipid species. This chapter will investigate the effects of dietary fat on CRC development and pathobiology, and possible mechanisms for specific lipid species in those processes. 10.1016/bs.ircmb.2019.07.001
    Bile acids in the colon, from healthy to cytotoxic molecules. Barrasa Juan I,Olmo Nieves,Lizarbe Ma Antonia,Turnay Javier Toxicology in vitro : an international journal published in association with BIBRA Bile acids are natural detergents mainly involved in facilitating the absorption of dietary fat in the intestine. In addition to this absorptive function, bile acids are also essential in the maintenance of the intestinal epithelium homeostasis. To accomplish this regulatory function, bile acids may induce programmed cell death fostering the renewal of the epithelium. Here we first discuss on the different molecular pathways of cell death focusing on apoptosis in colon epithelial cells. Bile acids may induce apoptosis in colonocytes through different mechanisms. In contrast to hepatocytes, the extrinsic apoptotic pathway seems to have a low relevance regarding bile acid cytotoxicity in the colon. On the contrary, these molecules mainly trigger apoptosis through direct or indirect mitochondrial perturbations, where oxidative stress plays a key role. In addition, bile acids may also act as regulatory molecules involved in different cell signaling pathways in colon cells. On the other hand, there is increasing evidence that the continuous exposure to certain hydrophobic bile acids, due to a fat-rich diet or pathological conditions, may induce oxidative DNA damage that, in turn, may lead to colorectal carcinogenesis as a consequence of the appearance of cell populations resistant to bile acid-induced apoptosis. Finally, some bile acids, such as UDCA, or low concentrations of hydrophobic bile acids, can protect colon cells against apoptosis induced by high concentrations of cytotoxic bile acids, suggesting a dual behavior of these agents as pro-death or pro-survival molecules. 10.1016/j.tiv.2012.12.020
    Intestinal bile acid physiology and pathophysiology. Martinez-Augustin Olga,Sanchez de Medina Fermin World journal of gastroenterology Bile acids (BAs) have a long established role in fat digestion in the intestine by acting as tensioactives, due to their amphipatic characteristics. BAs are reabsorbed very efficiently by the intestinal epithelium and recycled back to the liver via transport mechanisms that have been largely elucidated. The transport and synthesis of BAs are tightly regulated in part by specific plasma membrane receptors and nuclear receptors. In addition to their primary effect, BAs have been claimed to play a role in gastrointestinal cancer, intestinal inflammation and intestinal ionic transport. BAs are not equivalent in any of these biological activities, and structural requirements have been generally identified. In particular, some BAs may be useful for cancer chemoprevention and perhaps in inflammatory bowel disease, although further research is necessary in this field. This review covers the most recent developments in these aspects of BA intestinal biology. 10.3748/wjg.14.5630
    Secondary Bile Acids and Short Chain Fatty Acids in the Colon: A Focus on Colonic Microbiome, Cell Proliferation, Inflammation, and Cancer. Zeng Huawei,Umar Shahid,Rust Bret,Lazarova Darina,Bordonaro Michael International journal of molecular sciences Secondary bile acids (BAs) and short chain fatty acids (SCFAs), two major types of bacterial metabolites in the colon, cause opposing effects on colonic inflammation at chronically high physiological levels. Primary BAs play critical roles in cholesterol metabolism, lipid digestion, and host⁻microbe interaction. Although BAs are reabsorbed via enterohepatic circulation, primary BAs serve as substrates for bacterial biotransformation to secondary BAs in the colon. High-fat diets increase secondary BAs, such as deoxycholic acid (DCA) and lithocholic acid (LCA), which are risk factors for colonic inflammation and cancer. In contrast, increased dietary fiber intake is associated with anti-inflammatory and anticancer effects. These effects may be due to the increased production of the SCFAs acetate, propionate, and butyrate during dietary fiber fermentation in the colon. Elucidation of the molecular events by which secondary BAs and SCFAs regulate colonic cell proliferation and inflammation will lead to a better understanding of the anticancer potential of dietary fiber in the context of high-fat diet-related colon cancer. This article reviews the current knowledge concerning the effects of secondary BAs and SCFAs on the proliferation of colon epithelial cells, inflammation, cancer, and the associated microbiome. 10.3390/ijms20051214
    Peroxisome proliferator-activated receptor alpha activates cyclooxygenase-2 gene transcription through bile acid transport in human colorectal cancer cell lines. Oshio Hiroshi,Abe Takaaki,Onogawa Tohru,Ohtsuka Hideo,Sato Takeaki,Ii Takayuki,Fukase Kouji,Muto Mitsuhisa,Katayose Yu,Oikawa Masaya,Rikiyama Toshiki,Egawa Shinichi,Unno Michiaki Journal of gastroenterology BACKGROUND:Evidence is accumulating that bile acids are involved in colon cancer development, but their molecular mechanisms remain unexplored. Bile acid has been reported to be associated with induction of the cyclooxygenase-2 (COX-2) gene. Because the human liver-specific organic anion transporter-2 (LST-2/OATP8/OATP1B3) is expressed in gastrointestinal cancers and might transport bile acids to the intracellular space, we studied the molecular mechanisms by which bile acids induce the transcription of COX-2, and the role of LST-2 in colonic cell lines. METHODS:Transcriptional activity of COX-2 was measured using a human COX-2 promoter-luciferase assay under various concentrations of bile acids. Electrophoresis mobility shift assays (EMSAs) for peroxisome proliferators-activated receptor (PPAR) alpha and cyclic AMP responsive element (CRE) were performed. RESULTS:The COX-2 promoter was induced by lithocholic acid (LCA), deoxycholic acid (DCA), and chenodeoxycholic acid (CDCA). Deletion and site-directed mutation analyses showed that CRE is the responsive element for LCA. An adenovirus expression system revealed that LST-2 is responsible for induction of COX-2. By EMSA using oligonucleotides of CRE, we observed formation of a specific protein-DNA complex, which was inhibited by a specific antibody against PPARalpha and CRE. A PPARalpha-specific agonist induced transcription of COX-2. CONCLUSION:These results indicate that COX-2 is transcriptionally activated by the addition of LCA, CDCA, and DCA and that LST-2 plays an important role by transporting bile acid to the intracellular space. Moreover, LCA-dependent COX-2 gene activation consists of a transcriptional complex including PPARalpha and CRE-binding protein. Thus, this induction of COX-2 may participate in carcinogenesis and progression of colorectal cancer cells. 10.1007/s00535-008-2188-3
    MiR-22-silenced cyclin A expression in colon and liver cancer cells is regulated by bile acid receptor. Yang Fan,Hu Ying,Liu Hui-Xin,Wan Yu-Jui Yvonne The Journal of biological chemistry Because of the significant tumor-suppressive role of microRNA-22 (miR-22), the current study was designed to understand the regulation of miR-22 and to identify additional downstream miR-22 targets in liver and colon cells. The data showed that miR-22 was transcriptionally regulated by bile acid receptor farnesoid X receptor (FXR) through direct binding to an invert repeat 1 motif located at -1012 to -1025 bp upstream from miR-22. Among the studied primary and secondary bile acids, chenodeoxycholic acid, which has the highest binding affinity to FXR, induced miR-22 level in both Huh7 liver and HCT116 colon cells in a dose- and time-dependent manner. In addition, cyclin A2 (CCNA2) was identified as a miR-22 novel target in liver and colon cancer cells. The sequence of miR-22, which is conserved in mice, rats, humans, and other mammalians, aligns with the sequence of 3'-UTR of CCNA2. Chenodeoxycholic acid treatment and miR-22 mimics reduced CCNA2 protein and increased the number of G0/G1 Huh7 and HCT116 cells. In FXR KO mice, reduction of miR-22 was accompanied by elevated hepatic and ileal CCNA2 protein, as well as an increased number of hepatic and colonic Ki-67-positive cells. In humans, the expression levels of miR-22 and CCNA2 are inversely correlated in liver and colon cancers. Taken together, our data showed that bile acid-activated FXR stimulates miR-22-silenced CCNA2, a novel pathway for FXR to exert its protective effect in the gastrointestinal tract. 10.1074/jbc.M114.620369
    Association between fecal bile acids and colorectal cancer: a meta-analysis of observational studies. Tong Jin Lu,Ran Zhi Hua,Shen Jun,Fan Guo Quan,Xiao Shu Dong Yonsei medical journal PURPOSE:To provide a systematic review with meta-analysis for addressing the relationship between fecal bile acids (FBAs) and colorectal cancer. MATERIALS AND METHODS:Electronic databases were searched for all observational studies that examined the relationship between FBAs and colorectal cancer or adenoma, and calculated weighted mean difference (WMD) and 95% confidence interval (CI). Publication bias was assessed with funnel plot. RESULTS:Twenty case-control or cohort studies were identified. All studies were pooled to assess the relationship between total FBAs and cancer/adenoma of the large bowel, however, no association was seen (WMD 0.61mg/g freeze-dried feces; 95% CI: -0.35-1.57). Significantly increased concentration of chenodeoxycholic acid (CDCA) was seen while pooling to assess the relationship between CDCA and cancer/adenoma of the large bowel (WMD 0.13 mg/g freeze-dried feces; 95% CI: 0.01-0.25), especially for colorectal cancer (WMD 0.28mg/g freeze-dried feces; 95% CI: 0.10-0.46). However, no significant differences in deoxycholic acid (DCA), lithocholic acid (LCA), and primary and secondary bile acids, were seen between patients with cancer and patients with matched controls regardless of fixed and random effects models. CONCLUSION:CDCA might play a role in the etiology of colorectal cancer. 10.3349/ymj.2008.49.5.792
    Slc10a2-null mice uncover colon cancer-promoting actions of endogenous fecal bile acids. Raufman Jean-Pierre,Dawson Paul A,Rao Anuradha,Drachenberg Cinthia B,Heath Jonathon,Shang Aaron C,Hu Shien,Zhan Min,Polli James E,Cheng Kunrong Carcinogenesis Although epidemiological evidence in humans and bile acid feeding studies in rodents implicate bile acids as tumor promoters, the role of endogenous bile acids in colon carcinogenesis remains unclear. In this study, we exploited mice deficient in the ileal apical sodium-dependent bile acid transporter (ASBT, encoded by SLC10A2) in whom fecal bile acid excretion is augmented more than 10-fold. Wild-type and Asbt-deficient (Slc10a2 (-/-) ) male mice were treated with azoxymethane (AOM) alone to examine the development of aberrant crypt foci, the earliest histological marker of colon neoplasia and a combination of AOM and dextran sulfate sodium to induce colon tumor formation. Asbt-deficient mice exhibited a 54% increase in aberrant crypt foci, and 70 and 59% increases in colon tumor number and size, respectively. Compared to littermate controls, Asbt-deficient mice had a striking, 2-fold increase in the number of colon adenocarcinomas. Consistent with previous studies demonstrating a role for muscarinic and epidermal growth factor receptor signaling in bile acid-induced colon neoplasia, increasing bile acid malabsorption was associated with M3 muscarinic and epidermal growth factor receptor expression, and activation of extracellular signal-related kinase, a key post-receptor signaling molecule. 10.1093/carcin/bgv107
    Comparative effects of cellulose and soluble fibers (pectin, konjac glucomannan, inulin) on fecal water toxicity toward Caco-2 cells, fecal bacteria enzymes, bile acid, and short-chain fatty acids. Chen Hsiao-Ling,Lin You-Mei,Wang Yi-Chun Journal of agricultural and food chemistry The aim of this study was to compare the effects of cellulose and three soluble dietary fibers, pectin, konjac glucomannan (KGM), and inulin, on the cytotoxicity and DNA damage of fecal water-treated Caco-2 cells, a human colon adenocarcinoma cell line, and to investigate the fecal components that potentially modulate the fecal toxicity, that is, bacterial enzymes, bile acids, and short-chain fatty acids. Six-week-old BALB/cJ mice were randomly allocated to consume an AIN-93 diet that contained no dietary fiber (fiber-free) or 5% (w/w) cellulose, pectin, KGM, and inulin for 3 weeks. Feces were collected during days 18-21. Fecal waters were co-incubated with Caco-2 cells to determine the cytotoxicity and DNA damage. In addition, the fecal bacterial enzymes, bile acids, and short-chain fatty acids were determined. Results indicated that all fiber diets similarly increased the survival rate (%) of fecal water-treated Caco-2 cells as compared with the fiber-free diet. The inhibition of fecal water-induced DNA damage in Caco-2 cells was greater for the pectin and inulin diets than for the cellulose and KGM diets. In contrast, cellulose exerted the greatest inhibitory effect on the fecal β-glucuronidase activity. Cellulose and all soluble dietary fibers reduced the secondary bile acid concentrations in the fecal water, but only soluble fibers increased the fecal concentrations of short-chain fatty acids, as compared with no fiber. Therefore, this study suggests that all dietary fibers substantially reduced the fecal water toxicity, which is associated with decreased secondary bile acid levels by all fibers, reduced fecal β-glucuronidase activity by cellulose, and increased short-chain fatty acid levels by soluble dietary fibers. 10.1021/jf102127k
    Transcriptional regulation of the intestinal nuclear bile acid farnesoid X receptor (FXR) by the caudal-related homeobox 2 (CDX2). Modica Salvatore,Cariello Marica,Morgano Annalisa,Gross Isabelle,Vegliante Maria Carmela,Murzilli Stefania,Salvatore Lorena,Freund Jean-Noel,Sabbà Carlo,Moschetta Antonio The Journal of biological chemistry Farnesoid X receptor (FXR, NR1H4) is a bile acid-activated transcription factor that belongs to the nuclear receptor superfamily. It is highly expressed in the enterohepatic system, where it senses bile acid levels to consequently reduce their synthesis while inducing their detoxification. Bile acids are intestinal tumor promoters and their concentrations have to be tightly regulated. Indeed, reduced expression of FXR in the intestine increases colorectal cancer susceptibility in mice, whereas its activation can promote apoptosis in genetically modified cells. Notably, despite the broad knowledge of the FXR enterohepatic transcriptional activity, the molecular mechanisms regulating FXR expression in the intestine are still unknown. Herein, by combining both gain and loss of function approaches and FXR promoter activity studies, we identified caudal-related homeobox 2 (CDX2) transcription factor as a positive regulator of FXR expression in the enterocytes. Our results provide a putative novel tool for modulating FXR expression against bile acid-related colorectal cancer progression. 10.1074/jbc.M114.571513
    Inactivation of Adenomatous Polyposis Coli Reduces Bile Acid/Farnesoid X Receptor Expression through Fxr gene CpG Methylation in Mouse Colon Tumors and Human Colon Cancer Cells. Selmin Ornella I,Fang Changming,Lyon Adam M,Doetschman Tom C,Thompson Patricia A,Martinez Jesse D,Smith Jeffrey W,Lance Peter M,Romagnolo Donato F The Journal of nutrition BACKGROUND:The farnesoid X receptor (FXR) regulates bile acid (BA) metabolism and possesses tumor suppressor functions. FXR expression is reduced in colorectal tumors of subjects carrying inactivated adenomatous polyposis coli (APC). Identifying the mechanisms responsible for this reduction may offer new molecular targets for colon cancer prevention. OBJECTIVE:We investigated how APC inactivation influences the regulation of FXR expression in colonic mucosal cells. We hypothesized that APC inactivation would epigenetically repress nuclear receptor subfamily 1, group H, member 4 (FXR gene name) expression through increased CpG methylation. METHODS:Normal proximal colonic mucosa and normal-appearing adjacent colonic mucosa and colon tumors were collected from wild-type C57BL/6J and Apc-deficient (Apc(Min) (/+)) male mice, respectively. The expression of Fxr, ileal bile acid-binding protein (Ibabp), small heterodimer partner (Shp), and cyclooxygenase-2 (Cox-2) were determined by real-time polymerase chain reaction. In both normal and adjacent colonic mucosa and colon tumors, we measured CpG methylation of Fxr in bisulfonated genomic DNA. In vitro, we measured the impact of APC inactivation and deoxycholic acid (DCA) treatment on FXR expression in human colon cancer HCT-116 cells transfected with silencing RNA for APC and HT-29 cells carrying inactivated APC. RESULTS:In Apc(Min) (/+) mice, constitutive CpG methylation of the Fxrα3/4 promoter was linked to reduced (60-90%) baseline Fxr, Ibabp, and Shp and increased Cox-2 expression in apparently normal adjacent mucosa and colon tumors. Apc knockdown in HCT-116 cells increased cellular myelocytomatosis (c-MYC) and lowered (∼50%) FXR expression, which was further reduced (∼80%) by DCA. In human HCT-116 but not HT-29 colon cancer cells, DCA induced FXR expression and lowered CpG methylation of FXR. CONCLUSIONS:We conclude that the loss of APC function favors the silencing of FXR expression through CpG hypermethylation in mouse colonic mucosa and human colon cells, leading to reduced expression of downstream targets (SHP, IBABP) involved in BA homeostasis while increasing the expression of factors (COX-2, c-MYC) that contribute to inflammation and colon cancer. 10.3945/jn.115.216580
    Interplay between bile acids and the gut microbiota promotes intestinal carcinogenesis. Wang Sinan,Dong Wenxiao,Liu Li,Xu Mengque,Wang Yu,Liu Tianyu,Zhang Yujie,Wang Bangmao,Cao Hailong Molecular carcinogenesis The gut microbiota and the bile acid pool play pivotal roles in maintaining intestinal homeostasis. Bile acids are produced in the liver from cholesterol and metabolized in the intestine by the gut microbiota. Gut dysbiosis has been reported to be associated with colorectal cancer. However, the interplay between bile acid metabolism and the gut microbiota during intestinal carcinogenesis remains unclear. In the present study, we investigated the potential roles of bile acids and the gut microbiota in the cholic acid (CA; a primary bile acid)-induced intestinal adenoma-adenocarcinoma sequence. Apc mice, which spontaneously develop intestinal adenomas, were fed a diet supplemented with 0.4% CA for 12 weeks. Mice that were fed a normal diet were regarded as untreated controls. In CA-treated Apc mice, the composition of the gut microbiota was significantly altered, and CA was efficiently transformed into deoxycholic acid (a secondary bile acid) by the bacterial 7α-dehydroxylation reaction. The intestinal adenoma-adenocarcinoma sequence was observed in CA-treated Apc mice and was accompanied by an impaired intestinal barrier function and IL-6/STAT3-related low-grade inflammation. More importantly, microbiota depletion using an antibiotic cocktail globally compromised CA-induced intestinal carcinogenesis, suggesting a leading role for the microbiota during this process. Overall, our data suggested that the crosstalk between bile acids and the gut microbiota mediated intestinal carcinogenesis, which might provide novel therapeutic strategies against intestinal tumor development. 10.1002/mc.22999
    Olive oil, diet and colorectal cancer: an ecological study and a hypothesis. Stoneham M,Goldacre M,Seagroatt V,Gill L Journal of epidemiology and community health STUDY OBJECTIVES:Colorectal cancer (CRC) is a common cancer in many western countries and is probably caused in part by dietary factors. Southern European countries have lower incidence rates of CRC than many other western countries. It was postulated that, because olive oil is thought to influence bile salt secretion patterns in rats, it may influence the occurrence of CRC. The purpose of this study was to compare national levels of dietary factors, with particular reference to olive oil, with national differences in CRC incidence. DESIGN:Ecological study using existing international databases. Incidence rates for CRC, food supply data, and olive oil consumption data were extracted from published sources, combined, and analysed to calculate the correlations between CRC and 10 dietary factors. Associations were then explored using stepwise multiple regression. SETTING:28 countries from four continents. MAIN RESULTS:76% of the intercountry variation in CRC incidence rates was explained by three significant dietary factors-meat, fish and olive oil-in combination. Meat and fish were positively associated, and olive oil was negatively associated, with CRC incidence. CONCLUSION:Olive oil may have a protective effect on the development of CRC. The proposed hypothesis is that olive oil may influence secondary bile acid patterns in the colon that, in turn, might influence polyamine metabolism in colonic enterocytes in ways that reduce progression from normal mucosa to adenoma and carcinoma. 10.1136/jech.54.10.756
    METABOLIC DYSBIOSIS OF THE GUT MICROBIOTA AND ITS BIOMARKERS. Sitkin S I,Tkachenko E I,Vakhitov T Y Eksperimental'naia i klinicheskaia gastroenterologiia = Experimental & clinical gastroenterology Existing methods of clustering of gut microbiota (enterotypes, clusters, gradients), as well as the term 'phylogenetic core' do not reflect its functional activity. The authors propose to describe the key microbiora using term 'phylometabolic core of intestinal microbioca which more accurately reflects the functional importance of metabolically active microbiota. Phylometabolic core includes functional groups of microorganisms that perform similar metabolic functions: butyrate-producing bacteria, propionate-producing bacteria, acetate-produc- ing bacteria (acerogens), hydrogenosrophic microorganisms (reductive acetogens, sulfate-reducing bacteria, methanogens), lactate-producing and lactate-utilizing bacteria, bacteria involved in bile acids metabolism, bacteria that metabolize proteins and amino acids, vitamin-producing microorganisms, oxalate-degrading bacteria and others. The hypothesis that disturbance of microbial metabolism is the root of many human diseases is discussed. The microbial dysmexabo- lism leads to the metabolic dysbiosis (a particular form of dysbiosis) that is primarily characterized by metabolic abnormalities (e.g. serum, urinary, fetal or exhaled air). Metabolic dysbiosis is not necessarily accompanied by appreciable quantitative and/or qualitative changes in microbiora composition that called taxonomic dysbiosis. Since in the metabolic dysbiosis metabolic pathways can be switched only, it means the need for completely different approaches to its assessment using metabolomics (metabolic fingerprinting, metabolic profiling, meta-metabolomics). Metabolites concentrations in colon (feces, biopsy samples), blood (serum, plasma), urine or exhaled air, as well as metabolic profiles of examined substrates can serve as biomarkers. The main clinical variants of metabolic dysbiosis are due to the disturbances in microbial synthesis of short-chain fatty acids (primarily butyrate and propionate) and due to increasing bacterial production of hydrogen sulfide, ammonia and secondary bile acids (particularly deoxycholic acid). These kinds of metabolic dysbiosis can eventually lead to inflammatory bowel disease (IBD) or colorectal cancer (CRC). The metabolic dysbiosis due to bacterial choline dysmetabolism followed by overproduction of trimethylamine (TMA), arherogenic precursor of trimethylamine N-oxide (TMAO), is associated with atherogenesis and increased risk of cardiovascular disease. Dysmetabolism of aromatic amino acids leads to changes in the microbial production of phenylalanine and tyrosine derivatives (phenyl carboxylic acid, p-cresol) and tryptophan indole derivatives (indole carboxylic acid, indole) and contributes to pathogenesis in lBS. IBD, CRC, chronic liver and kidney diseases, cardiovascular diseases, autism and schizophrenia. Metabiotics, a new class of therapeutic agents, e.g. based on microbial metabolites, can correct metabolic dysbiosis, prevent diet- and microbiota-relared diseases and increase the effectiveness of treatment.
    Vitamin D receptor ligands, adenomatous polyposis coli, and the vitamin D receptor FokI polymorphism collectively modulate beta-catenin activity in colon cancer cells. Egan Jan B,Thompson Patricia A,Vitanov Milen V,Bartik Leonid,Jacobs Elizabeth T,Haussler Mark R,Gerner Eugene W,Jurutka Peter W Molecular carcinogenesis The activity of beta-catenin, commonly dysregulated in human colon cancers, is inhibited by the vitamin D receptor (VDR), and this mechanism is postulated to explain the putative anti-cancer activity of vitamin D metabolites in the colon. We investigated the effect of a common FokI restriction site polymorphism (F/f) in the human VDR gene as well as the effect of anti-tumorigenic 1,25-dihydroxyvitamin D(3) (1,25D) and pro-tumorigenic lithocholic acid (LCA) VDR ligands on beta-catenin transcriptional activity. Furthermore, the influence of a major regulatory protein of beta-catenin, the APC tumor suppressor gene, on VDR-dependent inhibition of beta-catenin activity was examined. We report herein that beta-catenin-mediated transcription is most effectively suppressed by the VDR FokI variant F/M4 when 1,25D is limiting. Using Caco-2 colorectal cancer (CRC) cells, it was observed that VDR ligands, 1,25D and LCA, both suppress beta-catenin transcriptional activity, though 1,25D exhibited significantly greater inhibition. Moreover, 1,25D, but not LCA, suppressed endogenous expression of the beta-catenin target gene DKK-4 independent of VDR DNA-binding activity. These results support beta-catenin sequestration away from endogenous gene targets by 1,25D-VDR. This activity is most efficiently mediated by the FokI gene variant F/M4, a VDR allele previously associated with protection against CRC. Interestingly, we found the inhibition of beta-catenin activity by 1,25D-VDR was significantly enhanced by wild-type APC. These results reveal a previously unrecognized role for 1,25D-VDR in APC/beta-catenin cross talk. Collectively, these findings strengthen evidence favoring a direct effect on the Wnt-signaling molecule beta-catenin as one anti-cancer target of 1,25D-VDR action in the colorectum. 10.1002/mc.20603
    Control of Inflammatory Bowel Disease and Colorectal Cancer by Synthetic Vitamin D Receptor Ligands. Takada Ichiro,Makishima Makoto Current medicinal chemistry Vitamin D deficiency and insufficiency are associated with an increased risk of cancer, autoimmune disease, inflammation, infection, cardiovascular disease and metabolic disease, as well as bone and mineral disorders. The vitamin D receptor (VDR), a member of the nuclear receptor superfamily, is a receptor for the active form of vitamin D, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], and mediates vitamin D regulation of specific target gene expression. The secondary bile acid lithocholic acid, which is produced by intestinal bacteria, is another natural VDR ligand. VDR signaling has been suggested to be involved in reciprocal communication between intestinal cells, including immune and epithelial cells, and intestinal microflora. In addition to epidemiological studies on vitamin D status, genome-wide analyses and cellular and animal experiments have shown that VDR is involved in the prevention of inflammatory bowel disease (IBD) and colorectal cancer (CRC). VDR deletion in mice exaggerates colitis and colon tumorigenesis in experimental models, and treatment of mice with synthetic vitamin D analogues ameliorates pathological changes in these diseases. Several VDR ligands are less active in increasing serum calcium levels, showing higher therapeutic efficiency than the natural hormone 1,25(OH)2D3. VDR plays a role in intestinal homeostasis and in protection against IBD and CRC. The development of VDR ligands with reduced or no calcemic activity will be necessary to expand clinical application of VDRtargeting therapy. 10.2174/0929867323666161202145509
    The deoxycholic acid targets miRNA-dependent CAC1 gene expression in multidrug resistance of human colorectal cancer. Kong Ying,Bai Pei-Song,Sun Hong,Nan Ke-Jun,Chen Nan-Zheng,Qi Xiao-Gai The international journal of biochemistry & cell biology There is evidence indicating that bile acid is a promoter of colorectal cancer. Deoxycholic acid modifies apoptosis and proliferation by affecting intracellular signaling and gene expression. We are interested in revealing the relationship between deregulated miRNAs and deoxycholic acid in colorectal cancer development. We found that miR-199a-5p was expressed at a low level in human primary colonic epithelial cells treated with deoxycholic acid compared with control, and miR-199a-5p was significantly down-regulated in colorectal cancer tissues. The miR-199a-5p expression in colorectal cancer cells led to the suppression of tumor cell growth, migration and invasion. We further identified CAC1, a cell cycle-related protein expressed in colorectal cancer, as a miR-199a-5p target. We demonstrated that CAC1 is over-expressed in malignant tumors, and cellular CAC1 depletion resulted in cancer growth suppression. HCT-8 cells transfected with a miR-199a-5p mimic or inhibitor had a decrease or increase in CAC1 protein levels, respectively. The results of the luciferase reporter gene analysis demonstrated that CAC1 was a direct miR-199a-5p target. The high miR-199a-5p expression and low CAC1 protein expression reverse the tumor cell drug resistance. We conclude that miR-199a-5p can regulate CAC1 and function as a tumor suppressor in colorectal cancer. Therefore, the potential roles of deoxycholic acid in carcinogenesis are to decrease miR-199a-5p expression and/or increase the expression of CAC1, which contributes to tumorigenesis in patients with CRC. These findings suggest that miR-199a-5p is a useful therapeutic target for colorectal cancer. 10.1016/j.biocel.2012.08.006
    Deoxycholic acid disrupts the intestinal mucosal barrier and promotes intestinal tumorigenesis. Liu Li,Dong Wenxiao,Wang Sinan,Zhang Yujie,Liu Tianyu,Xie Runxiang,Wang Bangmao,Cao Hailong Food & function High-fat diet, which leads to an increased level of deoxycholic acid (DCA) in the intestine, is a major environmental factor in the development of colorectal cancer (CRC). However, evidence relating to bile acids and intestinal tumorigenesis remains unclear. In this study, we investigated the effects of DCA on the intestinal mucosal barrier and its impact on the development of CRC. Here we showed that DCA disrupted cell monolayer integrity and increased proinflammatory cytokine production in intestinal cancer and precancerous cell lines (Caco-2 and IMCE). Apcmin/+ mice receiving DCA increased the number and size of intestinal adenomas and promoted the adenoma-adenocarcinoma sequence. Importantly, DCA induced the activation of the NLRP3 inflammasome, increased the production of inflammatory cytokines, and led to intestinal low grade inflammation. A reduction of tight junction protein zonula occludens 1 (ZO-1) and the number of intestinal cells including goblet cells and Paneth cells was also observed after DCA treatment. Moreover, DCA significantly reduced the level of secretory immunoglobulin A (sIgA), and promoted the polarization of M2 macrophages in the intestine of Apcmin/+ mice. In conclusion, these data suggested that DCA induced intestinal low grade inflammation and disrupted the mucosal physical and functional barriers, aggravating intestinal tumorigenesis. 10.1039/c8fo01143e
    Bile acid deoxycholate induces differential subcellular localisation of the PKC isoenzymes beta 1, epsilon and delta in colonic epithelial cells in a sodium butyrate insensitive manner. Looby Eileen,Long Aideen,Kelleher Dermot,Volkov Yuri International journal of cancer Elevated levels of bile acids have been implicated in the abnormal morphogenesis of the colonic epithelium thus contributing to colorectal cancer (CRC). Alternatively sodium butyrate (NaB) produced by anaerobic fermentation of dietary fibre is regarded as being protective against colon cancer. Bile acids such as deoxycholic acid (DCA) are thought to mediate some of their actions by differentially activating protein kinase C (PKC). We examined the effects of DCA on the subcellular localisation of PKC-beta(1), -epsilon and -delta and whether these responses could be modulated by NaB. HCT116 cells endogenously express PKC-epsilon and -delta but not PKC-beta. DCA treatment results in endogenous PKC-epsilon translocation but not PKC-delta after 1 hr. To study the subcellular localisation of PKC isoforms in response to DCA in real time, PKC-beta(1), PKC-epsilon and PKC-delta functionally intact green fluorescent protein (GFP) fusion constructs were used. Stimulation with 300 microM DCA induces rapid translocation of PKC-beta(1)-GFP and PKC-epsilon-GFP but not PKC-delta-GFP from the cytosol to the plasma membrane in 15 min. Interestingly, pretreatment with 4mM NaB does not modify the response of the PKC isoenzymes to DCA as PKC-beta(1)-GFP and PKC-epsilon-GFP translocates to the plasma membrane in 15 min whereas PKC-delta-GFP localisation remains unaltered. Immunofluorescence shows that PKC-beta(1)-GFP and PKC-epsilon-GFP cells treated with DCA colocalise with the cytoskeletal elements actin and tubulin adjacent to the plasma membrane. Our findings demonstrate that the differential activation of the PKC isoenzymes by DCA may be of critical importance for the functional responses of colonic epithelial cells. Supplementary material for this article can be found on the International Journal of Cancer website at http://www.interscience.wiley.com/jpages/0020-7136/suppmat/index.html. 10.1002/ijc.20803
    Epigenetic Mechanisms Underlying Organic Solute Transporter Repression in Colorectal Cancer. Zhou Ying,Ye Chaonan,Lou Yan,Liu Junqing,Ye Sheng,Chen Lu,Lei Jinxiu,Guo Suhang,Zeng Su,Yu Lushan Molecular pharmacology Colorectal cancer (CRC) is known to be the third most common cancer disease and the fourth-leading cause of cancer-related deaths worldwide. Bile acid, especially deoxycholic acid and lithocholic acid, were revealed to play an important role during carcinogenesis of CRC. In this study, we found organic solute transporter (OST), an important subunit of a bile acid export transporter OST-OST, was noticeably downregulated in CRC. The decline of OST expression in CRC was determined by Western blot and real-time polymerase chain reaction (RT-PCR), whereas chromatin immunoprecipitation (ChIP) was used to evaluate the histone acetylation state at the OST promoter region in vivo and in vitro. CRC cell lines HT29 and HCT15 were treated with trichostation A (TSA) for the subsequent determination, including RT-PCR, small interfering RNA (siRNA) knockdown, ChIP, and dual-luciferase reporter gene assay, to find out which histone acetyltransferases and deacetylases exactly participated in regulation. We demonstrated that after TSA treatment, OST expression increased noticeably because of upregulated H3K27Ac state at promoter region. We found that stimulating the expression of p300 with CTB (Cholera Toxin B subunit, an activator of p300) and inhibiting p300 expression with C646 (an inhibitor of p300) or siRNA designed for could control OST expression through modulating H3K27Ac state at promoter region. Therefore, downregulated expression of p300 in CRC may cause low expression of OST in CRC via epigenetic regulation. Generally, we revealed a novel epigenetic mechanism underlying OST repression in CRC, hoping this mechanism would help us to understand and inhibit carcinogenesis of CRC. SIGNIFICANCE STATEMENT: Organic solute transporter () expression is lower in colon cancer tissues compared with adjacent normal tissues. We revealed the epigenetic mechanisms of it and proved that p300 controls OST expression through modulating H3K27Ac state at promoter region and hence causes low expression of OST in colorectal cancer. 10.1124/mol.119.118216
    Lithocholic Acid Stimulates IL-8 Expression in Human Colorectal Cancer Cells Via Activation of Erk1/2 MAPK and Suppression of STAT3 Activity. Nguyen Thi Thinh,Lian Sen,Ung Trong Thuan,Xia Yong,Han Jae Young,Jung Young Do Journal of cellular biochemistry The secondary bile acid lithocholic acid (LCA), an established tumor promoter, has been implicated in colorectal cancer (CRC) metastasis. Overexpression of interleukin-8 (IL-8) has been detected in CRC, and it contributes to poor prognosis. However, the effect of LCA on IL-8 expression is still undefined. In this study, we observed that LCA treatment induced IL-8 expression in CRC HCT116 cells. Pharmacological inhibition and mutagenesis studies indicated that Erk1/2 is critical for LCA-induced IL-8 expression. Furthermore, LCA reduced the phosphorylation of STAT3, and the STAT3 inhibitor Stattic, accelerated LCA-induced IL-8 expression, suggesting that STAT3 is involved in LCA-induced IL-8 expression. Activation of Erk1/2 functioned as an upstream signal of the STAT3 suppression induced by LCA. In conclusion, LCA activated Erk1/2 and in turn, suppressed STAT3 phosphorylation to induce IL-8 expression in HCT116 cells, thus stimulating endothelial cell proliferation and tube like formation. J. Cell. Biochem. 118: 2958-2967, 2017. © 2017 Wiley Periodicals, Inc. 10.1002/jcb.25955
    Inhibition of butyrate uptake by the primary bile salt chenodeoxycholic acid in intestinal epithelial cells. Gonçalves Pedro,Catarino Telmo,Gregório Inês,Martel Fátima Journal of cellular biochemistry Colorectal cancer (CRC) is one of the most common cancers worldwide. Epidemiological and experimental studies suggest that bile acids may play a role in CRC etiology. Our aim was to characterize the effect of the primary bile acid chenodeoxycholic acid (CDCA) upon(14) C-BT uptake in tumoral (Caco-2) and non-tumoral (IEC-6) intestinal epithelial cell lines. A 2-day exposure to CDCA markedly and concentration-dependently inhibited (14) C-BT uptake by IEC-6 cells (IC(50) = 120 µM), and, less potently, by Caco-2 cells (IC(50) = 402 µM). The inhibitory effect of CDCA upon (14) C-BT uptake did not result from a decrease in cell proliferation or viability. In IEC-6 cells: (1) uptake of (14) C-BT involves both a high-affinity and a low-affinity transporter, and CDCA acted as a competitive inhibitor of the high-affinity transporter; (2) CDCA inhibited both Na(+)-coupled monocarboxylate cotransporter 1 (SMCT1)- and H(+)-coupled monocarboxylate transporter 1 (MCT1)-mediated uptake of (14) C-BT; (3) CDCA significantly increased the mRNA expression level of SMCT1; (4) inhibition of (14) C-BT uptake by CDCA was dependent on CaM, MAP kinase (ERK1/2 and p38 pathways), and PKC activation, and reduced by a reactive oxygen species scavenger. Finally, BT (5 mM) decreased IEC-6 cell viability and increased IEC-6 cell differentiation, and CDCA (100 µM) reduced this effect. In conclusion, CDCA is an effective inhibitor of (14) C-BT uptake in tumoral and non-tumoral intestinal epithelial cells, through inhibition of both H(+) -coupled MCT1- and SMCT1-mediated transport. Given the role played by BT in the intestine, this mechanism may contribute to the procarcinogenic effect of CDCA at this level. 10.1002/jcb.24172
    Effects of taurocholic acid metabolism by gut bacteria: A controlled feeding trial in adult African American subjects at elevated risk for colorectal cancer. Wolf Patricia G,Gaskins H Rex,Ridlon Jason M,Freels Sally,Hamm Alyshia,Goldberg Sarah,Petrilli Phyllis,Schering Teresa,Vergis Sevasti,Gomez-Perez Sandra,Yazici Cemal,Braunschweig Carol,Mutlu Ece,Tussing-Humphreys Lisa Contemporary clinical trials communications Colorectal cancer (CRC) is the third leading cause of cancer and second leading cause of cancer death in the United States. Recent evidence has linked a high fat and animal protein diet and microbial metabolism of host bile acids as environmental risk factors for CRC development. We hypothesize that the primary bile salt taurocholic acid (TCA) is a key, diet-controlled metabolite whose use by bacteria yields a carcinogen and tumor-promoter, respectively. The work is motivated by our published data indicating hydrogen sulfide (HS) and secondary bile acid production by colonic bacteria, serve as environmental insults contributing to CRC risk. The central aim of this study is to test whether a diet high in animal protein and saturated fat increases abundance of bacteria that generate HS and pro-inflammatory secondary bile acids in African Americans (AAs) at high risk for CRC. Our prospective, randomized, crossover feeding trial will examine two microbial mechanisms by which an animal-based diet may support the growth of TCA metabolizing bacteria. Each subject will receive two diets in a crossover design- an animal-based diet, rich in taurine and saturated fat, and a plant-based diet, low in taurine and saturated fat. A mediation model will be used to determine the extent to which diet (independent variable) and mucosal markers of CRC risk and DNA damage (dependent variables) are explained by colonic bacteria and their functions (mediator variables). This research will generate novel information targeted to develop effective dietary interventions that may reduce the unequal CRC burden in AAs. 10.1016/j.conctc.2020.100611
    Influence of Bile Acids on Colorectal Cancer Risk: Potential Mechanisms Mediated by Diet - Gut Microbiota Interactions. Ocvirk Sören,O'Keefe Stephen Jd Current nutrition reports Purpose of review:To review the evidence for the tumorigenic effects of food-stimulated bile acids on the colon and interaction with the gut microbiota. Recent Findings:High-fat diets promote the hepatic synthesis of bile acids and increase their delivery to the colonic lumen. Here, they stimulate the growth and activity of 7α-dehydroxylating bacteria, which convert primary into secondary bile acids that show tumorigenic activity, especially deoxycholic acid (DCA). Fecal levels of secondary bile acids correlate with mucosal and metabolic markers of colorectal cancer (CRC) risk in high and low risk adult individuals and can be modified within a few weeks by dietary change. While gut bacteria regulate the bile acid pool via complex microbial biotransformation, bile acids alter the gut microbiota composition due to their antimicrobial properties. This mutual reaction induces altered bile acid pools and dysbiotic compositions of the gut microbiota that may show tumor-promoting activity of bile acids beyond their conversion to DCA. Summary:Bile acids act as tumor promoters in the colon. Diet and the gut microbiota are most likely the key drivers that mediate and confer bile acid-associated tumorigenic activity. Bacterial conversion of bile acids in the colon has a significant impact on their tumorigenic activity, substantiating the hypothesis that diet affects CRC risk through its effects on colonic microbial metabolism. 10.1007/s13668-017-0219-5
    Bile acids reduce the apoptosis-inducing effects of sodium butyrate on human colon adenoma (AA/C1) cells: implications for colon carcinogenesis. McMillan L,Butcher S,Wallis Y,Neoptolemos J P,Lord J M Biochemical and biophysical research communications Butyrate is produced in the colon by fermentation of dietary fibre and induces apoptosis in colon adenoma and cancer cell lines, which may contribute to the protective effect of a high fibre diet against colorectal cancer (CRC). However, butyrate is present in the colon together with unconjugated bile acids, which are tumour promoters in the colon. We show here that bile acids deoxycholate (DCA) and chenodeoxycholate (CDCA), at levels present in the colon, gave a modest increase in cell proliferation and decreased spontaneous apoptosis in AA/C1 adenoma cells. Bile acids significantly inhibited the induction of apoptosis by butyrate in AA/C1 cells. However, the survival-inducing effects of bile acids on AA/C1 cells could be overcome by increasing the concentration of sodium butyrate. These results suggest that dysregulation of apoptosis in colonic epithelial cells by dietary factors is a key factor in the pathophysiology of CRC. 10.1006/bbrc.2000.2899
    FXR Regulates Intestinal Cancer Stem Cell Proliferation. Fu Ting,Coulter Sally,Yoshihara Eiji,Oh Tae Gyu,Fang Sungsoon,Cayabyab Fritz,Zhu Qiyun,Zhang Tong,Leblanc Mathias,Liu Sihao,He Mingxiao,Waizenegger Wanda,Gasser Emanuel,Schnabl Bernd,Atkins Annette R,Yu Ruth T,Knight Rob,Liddle Christopher,Downes Michael,Evans Ronald M Cell Increased levels of intestinal bile acids (BAs) are a risk factor for colorectal cancer (CRC). Here, we show that the convergence of dietary factors (high-fat diet) and dysregulated WNT signaling (APC mutation) alters BA profiles to drive malignant transformations in Lgr5-expressing (Lgr5) cancer stem cells and promote an adenoma-to-adenocarcinoma progression. Mechanistically, we show that BAs that antagonize intestinal farnesoid X receptor (FXR) function, including tauro-β-muricholic acid (T-βMCA) and deoxycholic acid (DCA), induce proliferation and DNA damage in Lgr5 cells. Conversely, selective activation of intestinal FXR can restrict abnormal Lgr5 cell growth and curtail CRC progression. This unexpected role for FXR in coordinating intestinal self-renewal with BA levels implicates FXR as a potential therapeutic target for CRC. 10.1016/j.cell.2019.01.036
    Large procyanidins prevent bile-acid-induced oxidant production and membrane-initiated ERK1/2, p38, and Akt activation in Caco-2 cells. Da Silva Mathieu,Jaggers Grayson K,Verstraeten Sandra V,Erlejman Alejandra G,Fraga Cesar G,Oteiza Patricia I Free radical biology & medicine Procyanidins are oligomers of flavanol subunits present in large amounts in fruits and vegetables. Their consumption is associated with health benefits against colonic inflammation and colorectal cancer (CRC). Large procyanidins (with more than three subunits) are not absorbed by intestinal epithelial cells but could exert biological actions through their interactions with the cell membrane. This study investigated the capacity of hexameric procyanidins (Hex) to prevent oncogenic events initiated by deoxycholic acid (DCA), a secondary bile acid linked to the promotion of CRC. Hex interacted with Caco-2 cell membranes preferentially at the water-lipid interface. Hex (2.5-20 μM) inhibited DCA-triggered increase in cellular calcium, NADPH oxidase activation, and oxidant production. DCA promoted the activation of protein kinase B (Akt), of the mitogen-activated protein kinases ERK1/2 and p38, and of the downstream transcription factor AP-1. This activation was not triggered by calcium or oxidant increases. Hex caused a dose-dependent inhibition of DCA-mediated activation of all these signals. DCA also triggered alterations in the cell monolayer morphology and apoptotic cell death, events that were delayed by Hex. The capacity of large procyanidins to interact with the cell membrane and prevent those cell membrane-associated events can in part explain the beneficial effects of procyanidins on CRC. 10.1016/j.freeradbiomed.2011.10.436
    Taurocholic acid metabolism by gut microbes and colon cancer. Ridlon Jason M,Wolf Patricia G,Gaskins H Rex Gut microbes Colorectal cancer (CRC) is one of the most frequent causes of cancer death worldwide and is associated with adoption of a diet high in animal protein and saturated fat. Saturated fat induces increased bile secretion into the intestine. Increased bile secretion selects for populations of gut microbes capable of altering the bile acid pool, generating tumor-promoting secondary bile acids such as deoxycholic acid and lithocholic acid. Epidemiological evidence suggests CRC is associated with increased levels of DCA in serum, bile, and stool. Mechanisms by which secondary bile acids promote CRC are explored. Furthermore, in humans bile acid conjugation can vary by diet. Vegetarian diets favor glycine conjugation while diets high in animal protein favor taurine conjugation. Metabolism of taurine conjugated bile acids by gut microbes generates hydrogen sulfide, a genotoxic compound. Thus, taurocholic acid has the potential to stimulate intestinal bacteria capable of converting taurine and cholic acid to hydrogen sulfide and deoxycholic acid, a genotoxin and tumor-promoter, respectively. 10.1080/19490976.2016.1150414
    Ligand-dependent activation of the epidermal growth factor receptor by secondary bile acids in polarizing colon cancer cells. Merchant Nipun B,Rogers Christopher M,Trivedi Bakula,Morrow Jason,Coffey Robert J Surgery BACKGROUND:Secondary bile acids such as deoxycholic acid (DCA) are known to promote colorectal cancer (CRC). Increasing evidence suggests that DCA-induced signaling is mediated by activation of the epidermal growth factor receptor (EGFR). We have shown that activation of the EGFR induces up-regulation of cyclooxygenase 2, basolateral release of prostaglandins (PGs), and mitogenesis in a polarizing human colon cancer cell line, HCA-7. The purpose of this study was to determine the mechanism by which DCA activates EGFR in human polarizing CRC cell lines HCA-7 and HCT-8. METHODS:A primary, non-tumor-promoting bile acid (cholic acid [CA]) and a secondary, tumor-promoting bile acid, DCA, were added to the apical and basolateral compartment of polarized HCA-7 and HCT-8 cells. These cells were pretreated with monoclonal antibody 528, a monoclonal antibody that inhibits ligand binding to EGFR, or with WAY-022, a selective inhibitor of tumor necrosis factor-alpha converting enzyme/a disintegrin and metalloprotease-17 (TACE/ADAM-17), which cleaves amphiregulin (AR) to its mature, soluble form from the basolateral cell membrane. AR levels were measured in the apical and basolateral medium and cell lysates by radioimmunoassay. PGs were measured in the apical and basolateral medium by gas chromatography/mass spectrometry. RESULTS:Basolateral delivery of DCA, but not CA, preferentially stimulated release of AR into the basolateral medium compared with cell lysates of polarized HCA-7 and HCT-8 cells. Basolateral delivery of DCA resulted in increased basolateral PGE2 levels (P < .05), and this effect was attenuated by pretreatment with monoclonal antibody 528 (P < .05). Inhibiting cell surface cleavage of AR with WAY-022 before DCA treatment reduced AR (P < .05) and PGE2 (P < .05) levels in the basolateral medium. CONCLUSION:DCA, but not CA, results in compartment-specific, ligand-dependent activation of EGFR and subsequent increased basolateral PGE2 levels. The mechanism of DCA-induced EGFR activation is ligand-dependent and is controlled, at least in part, at the level of AR release from the basolateral cell membrane. 10.1016/j.surg.2005.06.030
    Differences in Fecal Gut Microbiota, Short-Chain Fatty Acids and Bile Acids Link Colorectal Cancer Risk to Dietary Changes Associated with Urbanization Among Zimbabweans. Katsidzira L,Ocvirk S,Wilson A,Li J,Mahachi C B,Soni D,DeLany J,Nicholson J K,Zoetendal E G,O'Keefe S J D Nutrition and cancer The incidence of colorectal cancer (CRC) is gradually rising in sub-Saharan Africa. This may be due to dietary changes associated with urbanization, which may induce tumor-promoting gut microbiota composition and function. We compared fecal microbiota composition and activity in 10 rural and 10 urban Zimbabweans for evidence of a differential CRC risk. Dietary intake was assessed by a food frequency questionnaire. Fecal microbiota composition, metabolomic profile, functional microbial genes were analyzed, and bile acids and short chain fatty acids quantified. Animal protein intake was higher among urban volunteers, but carbohydrate and fiber intake were similar. Bacteria related to , , and were higher in urban residents, whereas bacteria related to and were higher in rural volunteers. Fecal levels of primary bile acids, cholic acid, and chenodeoxycholic acid ( < 0.05), and secondary bile acids, deoxycholic acid ( < 0.05) and ursodeoxycholic acid ( < 0.001) were higher in urban residents. Fecal levels of acetate and propionate, but not butyrate, were higher in urban residents. The gut microbiota composition and activity among rural and urban Zimbabweans retain significant homogeneity (possibly due to retention of dietary fiber), but urban residents have subtle changes, which may indicate a higher CRC risk. 10.1080/01635581.2019.1602659
    Bile acids and colon cancer: Is FXR the solution of the conundrum? Gadaleta Raffaella Maria,Garcia-Irigoyen Oihane,Moschetta Antonio Molecular aspects of medicine Diet and lifestyle habits have a profound impact on the pathophysiology of many diseases. Colorectal cancer (CRC) is the third most common cancer worldwide and its etiology is strongly influenced by nutrition and high fat/high carbohydrate Western-style diet. Human epidemiological and animal studies have shown that colonic cancer risk is also related to faecal bile acid concentration. Abnormally high levels of bile acids (BA) trigger the colonic mucosa with a plethora of detrimental effects such as DNA oxidative damage, inflammation and hyperproliferation that highly promote CRC progression in post-initiation phase. The Farnesoid X receptor (FXR) is a nuclear receptor that transcriptionally mediates the signalling activity of BAs. FXR regulates BA metabolism mainly maintaining BA concentrations within a physiological range, thereby preventing BA-induced cytotoxicity. In fact, loss of FXR is associated with higher BA concentrations and with a pro-tumorigenic phenotype. Here we explore the liaison connecting nutrition, intestinal epithelium renewal, BA and their nuclear receptor FXR in CRC. Moreover, we summarize evidence linking BA and CRC, as well as examine current understanding of the protumoral actions of BA and the bona fide antitumoral properties of FXR. 10.1016/j.mam.2017.04.002
    Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Jia Wei,Xie Guoxiang,Jia Weiping Nature reviews. Gastroenterology & hepatology Emerging evidence points to a strong association between the gut microbiota and the risk, development and progression of gastrointestinal cancers such as colorectal cancer (CRC) and hepatocellular carcinoma (HCC). Bile acids, produced in the liver, are metabolized by enzymes derived from intestinal bacteria and are critically important for maintaining a healthy gut microbiota, balanced lipid and carbohydrate metabolism, insulin sensitivity and innate immunity. Given the complexity of bile acid signalling and the direct biochemical interactions between the gut microbiota and the host, a systems biology perspective is required to understand the liver-bile acid-microbiota axis and its role in gastrointestinal carcinogenesis to reverse the microbiota-mediated alterations in bile acid metabolism that occur in disease states. An examination of recent research progress in this area is urgently needed. In this Review, we discuss the mechanistic links between bile acids and gastrointestinal carcinogenesis in CRC and HCC, which involve two major bile acid-sensing receptors, farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (TGR5). We also highlight the strategies and cutting-edge technologies to target gut-microbiota-dependent alterations in bile acid metabolism in the context of cancer therapy. 10.1038/nrgastro.2017.119