Emerging roles for human glycolipid transfer protein superfamily members in the regulation of autophagy, inflammation, and cell death. Mishra Shrawan K,Gao Yong-Guang,Zou Xianqiong,Stephenson Daniel J,Malinina Lucy,Hinchcliffe Edward H,Chalfant Charles E,Brown Rhoderick E Progress in lipid research Glycolipid transfer proteins (GLTPs) were first identified over three decades ago as ~24kDa, soluble, amphitropic proteins that specifically accelerate the intermembrane transfer of glycolipids. Upon discovery that GLTPs use a unique, all-α-helical, two-layer 'sandwich' architecture (GLTP-fold) to bind glycosphingolipids (GSLs), a new protein superfamily was born. Structure/function studies have provided exquisite insights defining features responsible for lipid headgroup selectivity and hydrophobic 'pocket' adaptability for accommodating hydrocarbon chains of differing length and unsaturation. In humans, evolutionarily-modified GLTP-folds have been identified with altered sphingolipid specificity, e. g. ceramide-1-phosphate transfer protein (CPTP), phosphatidylinositol 4-phosphate adaptor protein-2 (FAPP2) which harbors a GLTP-domain and GLTPD2. Despite the wealth of structural data (>40 Protein Data Bank deposits), insights into the in vivo functional roles of GLTP superfamily members have emerged slowly. In this review, recent advances are presented and discussed implicating human GLTP superfamily members as important regulators of: i) pro-inflammatory eicosanoid production associated with Group-IV cytoplasmic phospholipase A; ii) autophagy and inflammasome assembly that drive surveillance cell release of interleukin-1β and interleukin-18 inflammatory cytokines; iii) cell cycle arrest and necroptosis induction in certain colon cancer cell lines. The effects exerted by GLTP superfamily members appear linked to their ability to regulate sphingolipid homeostasis by acting in either transporter and/or sensor capacities. These timely findings are opening new avenues for future cross-disciplinary, translational medical research involving GLTP-fold proteins in human health and disease. Such avenues include targeted regulation of specific GLTP superfamily members to alter sphingolipid levels as a therapeutic means for combating viral infection, neurodegenerative conditions and circumventing chemo-resistance during cancer treatment. 10.1016/j.plipres.2020.101031
    'Hints' in the killer protein gasdermin D: unveiling the secrets of gasdermins driving cell death. Qiu Shiqiao,Liu Jing,Xing Feiyue Cell death and differentiation Pyroptosis is a lytic form of cell death distinguished from apoptosis, ferroptosis, necrosis, necroptosis, NETosis, oncosis, pyronecrosis and autophagy. Proinflammatory caspases cleave a gasdermin D (GSDMD) protein to generate a 31 kDa N-terminal domain. The cleavage relieves the intramolecular inhibition on the gasdermin-N domain, which then moves to the plasma membrane to exhibit pore-forming activity. Thus, GSDMD acts as the final and direct executor of pyroptotic cell death. Owing to the selective targeting of the inner leaflet of the plasma membrane with the pore-forming that determines pyroptotic cell death, GSDMD could be a potential target to control cell death or extracellular bacterial infections. Intriguingly, other gasdermin family members also share similar N-terminal domains, but they present different cell death programs. Herein, we summarize features and functions of the novel player proteins in cell death, including GSDMD triggering pyroptosis, Gsdma3/GSDMA initiating autophagy/apoptosis and DFNA5 inducing apoptosis/secondary necrosis. The gasdermin N terminus appears to be a novel pore-forming protein. This provides novel insight into the underlying roles and mechanisms of lytic or nonlytic forms of programmed cell death, as well as their potential applications in inflammation-associated diseases. 10.1038/cdd.2017.24
    TRIM-directed selective autophagy regulates immune activation. Kimura Tomonori,Jain Ashish,Choi Seong Won,Mandell Michael A,Johansen Terje,Deretic Vojo Autophagy Selectivity of autophagy is achieved by target recognition; however, the number of autophagy receptors identified so far is limited. In this study we demonstrate that a subset of tripartite motif (TRIM) proteins mediate selective autophagy of key regulators of inflammatory signaling. MEFV/TRIM20, and TRIM21 act as autophagic receptors recognizing their cognate targets and delivering them for autophagic degradation. MEFV recognizes the inflammasome components NLRP3, CASP1 and NLRP1, whereas TRIM21 specifically recognizes the activated, dimeric from of IRF3 inducing type I interferon gene expression. MEFV and TRIM21 have a second activity, whereby they act not only as receptors but also recruit and organize key components of autophagic machinery consisting of ULK1, BECN1, ATG16L1, and mammalian homologs of Atg8, with a preference for GABARAP. MEFV capacity to organize the autophagy apparatus is affected by common mutations causing familial Mediterranean fever. These findings reveal a general mode of action of TRIMs as autophagic receptor-regulators performing a highly-selective type of autophagy (precision autophagy), with MEFV specializing in the suppression of inflammasome and CASP1 activation engendering IL1B/interleukin-1β production and implicated in the form of cell death termed pyroptosis, whereas TRIM21 dampens type I interferon responses. 10.1080/15548627.2016.1154254
    The molecular machinery of regulated cell death. Tang Daolin,Kang Rui,Berghe Tom Vanden,Vandenabeele Peter,Kroemer Guido Cell research Cells may die from accidental cell death (ACD) or regulated cell death (RCD). ACD is a biologically uncontrolled process, whereas RCD involves tightly structured signaling cascades and molecularly defined effector mechanisms. A growing number of novel non-apoptotic forms of RCD have been identified and are increasingly being implicated in various human pathologies. Here, we critically review the current state of the art regarding non-apoptotic types of RCD, including necroptosis, pyroptosis, ferroptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis and oxeiptosis. The in-depth comprehension of each of these lethal subroutines and their intercellular consequences may uncover novel therapeutic targets for the avoidance of pathogenic cell loss. 10.1038/s41422-019-0164-5
    How Neutrophils Meet Their End. Lawrence Shelley M,Corriden Ross,Nizet Victor Trends in immunology Neutrophil death can transpire via diverse pathways and is regulated by interactions with commensal and pathogenic microorganisms, environmental exposures, and cell age. At steady state, neutrophil turnover and replenishment are continually maintained via a delicate balance between host-mediated responses and microbial forces. Disruptions in this equilibrium directly impact neutrophil numbers in circulation, cell trafficking, antimicrobial defenses, and host well-being. How neutrophils meet their end is physiologically important and can result in different immunologic consequences. Whereas nonlytic forms of neutrophil death typically elicit anti-inflammatory responses and promote healing, pathways ending with cell membrane rupture may incite deleterious proinflammatory responses, which can exacerbate local tissue injury, lead to chronic inflammation, or precipitate autoimmunity. This review seeks to provide a contemporary analysis of mechanisms of neutrophil death. 10.1016/j.it.2020.03.008
    CPTP: A sphingolipid transfer protein that regulates autophagy and inflammasome activation. Mishra Shrawan Kumar,Gao Yong-Guang,Deng Yibin,Chalfant Charles E,Hinchcliffe Edward H,Brown Rhoderick E Autophagy The macroautophagy/autophagy and inflammasome pathways are linked through their roles in innate immunity and chronic inflammatory disease. Ceramide-1-phosphate (C1P) is a bioactive sphingolipid that regulates pro-inflammatory eicosanoid production. Whether C1P also regulates autophagy and inflammasome assembly/activation is not known. Here we show that CPTP (a protein that traffics C1P from its site of phosphorylation in the trans-Golgi to target membranes) regulates both autophagy and inflammasome activation. In human epithelial cells, knockdown of CPTP (but not GLTP [glycolipid transfer protein]) or expression of C1P binding-site point mutants, stimulated an 8- to 10-fold increase in autophagosomes and altered endogenous LC3-II and SQSTM1/p62 protein expression levels. CPTP depletion-induced autophagy elevated early markers of autophagosome formation (Golgi-derived ATG9A-vesicles, WIPI1), required key phagophore assembly and elongation factors (ATG5, ATG7, ULK1), and suppressed MTOR phosphorylation and that of its downstream target, RPS6KB1/p70S6K. Wild-type CPTP overexpression exerted a protective effect against starvation-induced autophagy. In THP-1 macrophage-like surveillance cells, CPTP knockdown induced not only autophagy but also elevated CASP1/caspase-1 levels, and strongly increased IL1B/interleukin-1β and IL18 release via a NLRP3 (but not NLRC4) inflammasome-based mechanism, while only moderately increasing inflammatory (pyroptotic) cell death. Inflammasome assembly and activation stimulated by CPTP depletion were autophagy dependent. Elevation of intracellular C1P by exogenous C1P treatment (instead of CPTP inhibition) also induced autophagy and IL1B release. Our findings identify human CPTP as an endogenous regulator of early-stage autophagosome assembly and inflammasome-driven, pro-inflammatory cytokine generation and release. 10.1080/15548627.2017.1393129
    Cell Death in the Lung: The Apoptosis-Necroptosis Axis. Sauler Maor,Bazan Isabel S,Lee Patty J Annual review of physiology Regulated cell death is a major mechanism to eliminate damaged, infected, or superfluous cells. Previously, apoptosis was thought to be the only regulated cell death mechanism; however, new modalities of caspase-independent regulated cell death have been identified, including necroptosis, pyroptosis, and autophagic cell death. As an understanding of the cellular mechanisms that mediate regulated cell death continues to grow, there is increasing evidence that these pathways are implicated in the pathogenesis of many pulmonary disorders. This review summarizes our understanding of regulated cell death as it pertains to the pathogenesis of chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis, acute respiratory distress syndrome, and pulmonary arterial hypertension. 10.1146/annurev-physiol-020518-114320
    Ferroptosis: past, present and future. Li Jie,Cao Feng,Yin He-Liang,Huang Zi-Jian,Lin Zhi-Tao,Mao Ning,Sun Bei,Wang Gang Cell death & disease Ferroptosis is a new type of cell death that was discovered in recent years and is usually accompanied by a large amount of iron accumulation and lipid peroxidation during the cell death process; the occurrence of ferroptosis is iron-dependent. Ferroptosis-inducing factors can directly or indirectly affect glutathione peroxidase through different pathways, resulting in a decrease in antioxidant capacity and accumulation of lipid reactive oxygen species (ROS) in cells, ultimately leading to oxidative cell death. Recent studies have shown that ferroptosis is closely related to the pathophysiological processes of many diseases, such as tumors, nervous system diseases, ischemia-reperfusion injury, kidney injury, and blood diseases. How to intervene in the occurrence and development of related diseases by regulating cell ferroptosis has become a hotspot and focus of etiological research and treatment, but the functional changes and specific molecular mechanisms of ferroptosis still need to be further explored. This paper systematically summarizes the latest progress in ferroptosis research, with a focus on providing references for further understanding of its pathogenesis and for proposing new targets for the treatment of related diseases. 10.1038/s41419-020-2298-2
    Autophagic degradation of the circadian clock regulator promotes ferroptosis. Liu Jiao,Yang Minghua,Kang Rui,Klionsky Daniel J,Tang Daolin Autophagy Macroautophagy (hereafter referred to as autophagy) involves a lysosomal degradation pathway and plays a context-dependent role in promoting either cell survival or cell death during stress; excessive or impaired autophagy is implicated in various types of cell death. In particular, lipid peroxidation-associated ferroptosis has recently been recognized as a type of autophagy-dependent cell death, but the mechanisms involved remain largely obscure. Our recent findings demonstrate that clockophagy, namely the selective autophagic degradation of the circadian clock regulator ARNTL/BMAL1, promotes ferroptotic cancer cell death and . Mechanically, the cargo receptor SQSTM1/p62 is responsible for the autophagic degradation of ARNTL in response to type 2 ferroptosis inducers (e.g., RSL3 and FIN56), but not type 1 ferroptosis inducers (e.g., erastin, sulfasalazine, and sorafenib). Consequently, clockophagy-mediated ARNTL degradation promotes lipid peroxidation and subsequent ferroptosis through blocking HIF1A-dependent fatty acid uptake and lipid storage. These findings highlight a novel type of selective autophagy in regulated cell death. 10.1080/15548627.2019.1659623
    Autophagy-Dependent Ferroptosis: Machinery and Regulation. Liu Jiao,Kuang Feimei,Kroemer Guido,Klionsky Daniel J,Kang Rui,Tang Daolin Cell chemical biology Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved cellular process capable of degrading various biological molecules (e.g., protein, glycogen, lipids, DNA, and RNA) and organelles (e.g., mitochondria, endoplasmic reticulum [ER] ribosomes, lysosomes, and micronuclei) via the lysosomal pathway. Ferroptosis is a type of oxidative stress-dependent regulated cell death associated with iron accumulation and lipid peroxidation. The recently discovered role of autophagy, especially selective types of autophagy (e.g., ferritinophagy, lipophagy, clockophagy, and chaperone-mediated autophagy), in driving cells toward ferroptotic death motivated us to explore the functional interactions between metabolism, immunity, and cell death. Here, we describe types of selective autophagy and discuss the regulatory mechanisms and signaling pathways of autophagy-dependent ferroptosis. We also summarize chemical modulators that are currently available for triggering or blocking autophagy-dependent ferroptosis and that may be developed for therapeutic interventions in human diseases. 10.1016/j.chembiol.2020.02.005
    Ferroptosis: Final destination for cancer? Ye Zeng,Liu Wensheng,Zhuo Qifeng,Hu Qiangsheng,Liu Mengqi,Sun Qiqing,Zhang Zheng,Fan Guixiong,Xu Wenyan,Ji Shunrong,Yu Xianjun,Qin Yi,Xu Xiaowu Cell proliferation Ferroptosis is a recently defined, non-apoptotic, regulated cell death (RCD) process that comprises abnormal metabolism of cellular lipid oxides catalysed by iron ions or iron-containing enzymes. In this process, a variety of inducers destroy the cell redox balance and produce a large number of lipid peroxidation products, eventually triggering cell death. However, in terms of morphology, biochemistry and genetics, ferroptosis is quite different from apoptosis, necrosis, autophagy-dependent cell death and other RCD processes. A growing number of studies suggest that the relationship between ferroptosis and cancer is extremely complicated and that ferroptosis promises to be a novel approach for the cancer treatment. This article primarily focuses on the mechanism of ferroptosis and discusses the potential application of ferroptosis in cancer therapy. 10.1111/cpr.12761
    Ferroptosis is an autophagic cell death process. Gao Minghui,Monian Prashant,Pan Qiuhui,Zhang Wei,Xiang Jenny,Jiang Xuejun Cell research Ferroptosis is an iron-dependent form of regulated necrosis. It is implicated in various human diseases, including ischemic organ damage and cancer. Here, we report the crucial role of autophagy, particularly autophagic degradation of cellular iron storage proteins (a process known as ferritinophagy), in ferroptosis. Using RNAi screening coupled with subsequent genetic analysis, we identified multiple autophagy-related genes as positive regulators of ferroptosis. Ferroptosis induction led to autophagy activation and consequent degradation of ferritin and ferritinophagy cargo receptor NCOA4. Consistently, inhibition of ferritinophagy by blockage of autophagy or knockdown of NCOA4 abrogated the accumulation of ferroptosis-associated cellular labile iron and reactive oxygen species, as well as eventual ferroptotic cell death. Therefore, ferroptosis is an autophagic cell death process, and NCOA4-mediated ferritinophagy supports ferroptosis by controlling cellular iron homeostasis. 10.1038/cr.2016.95