加载中

    Dopamine signaling regulates the projection patterns in the mouse chiasm. Chen Tingting,Hu Yunlong,Lin Xiaotan,Huang Xinping,Liu Bin,Leung Peggy,Chan Sun-On,Guo Deyin,Jin Guangyi Brain research Ocular albinism (OA) is characterized by inadequate L-3, 4-dihydroxyphenylalanine (L-DOPA) and dopamine (DA) in the eyes. This study investigated DA-related signaling pathways in mouse chiasm projection patterns and the potential role of ocular albinism type 1 (OA1) and dopamine 1A (D1A) receptors in the optic pathway. In embryonic day (E) E13-E15 retina, most L-DOPA and OA1-positive cells were distributed among Müller glial cells on E13 and retinal ganglion cells (RGC) on E14. In the ventral diencephalon, OA1 and L-DOPA were strongly expressed on the optic chiasm (OC) and optic tract (OT), respectively, but weak on the optic stalk (OS). At E13-E15, DA and D1A staining was predominately expressed in radially arranged cells with a neuronal expression pattern. In the ventral diencephalon, DA and D1A were strongly expressed on the OC, OT and OS. Furthermore, L-DOPA significantly inhibited retinal axon outgrowth in both the dorsal nasal (DN) and ventral temporal (VT) groups. DA inhibited retinal axon outgrowth, which was abolished by the D1A antagonist SCH23390. Brain slice cultures indicated that L-DOPA inhibited axons that crossed at the OC of E13 embryos, which was not abolished by DA. L-DOPA also inhibited axons that crossed at the OC of albino mice. Albino mice exhibited reduced ipsilateral retinal projections compared with C57 pigmented mice. No significant difference was identified in the uncrossed projections of albino mice following L-DOPA and DA expression. Furthermore, transcription factor Zic family member 2 (Zic2) upregulated OA1 mRNA expression. Our findings provide critical insights into DA-related signaling in retinal development. 10.1016/j.brainres.2015.08.026
    The protein Ocular albinism 1 is the orphan GPCR GPR143 and mediates depressor and bradycardic responses to DOPA in the nucleus tractus solitarii. Hiroshima Y,Miyamoto H,Nakamura F,Masukawa D,Yamamoto T,Muraoka H,Kamiya M,Yamashita N,Suzuki T,Matsuzaki S,Endo I,Goshima Y British journal of pharmacology BACKGROUND AND PURPOSE:L-DOPA is generally considered to alleviate the symptoms of Parkinson's disease by its conversion to dopamine. We have proposed that DOPA is itself a neurotransmitter in the CNS. However, specific receptors for DOPA have not been identified. Recently, the gene product of ocular albinism 1 (OA1) was found to exhibit DOPA-binding activity. Here, we have investigated whether OA1 is a functional receptor of DOPA in the nucleus tractus solitarii (NTS). EXPERIMENTAL APPROACH:We examined immunohistochemical expression of OA1 in the NTS, and the effects of DOPA microinjected into the depressor sites of NTS on blood pressure and heart rate in anaesthetized rats, with or without prior knock-down of OA1 in the NTS, using shRNA against OA1. KEY RESULTS:Using a specific OA1 antibody, OA1-positive cells and nerve fibres were found in the depressor sites of the NTS. OA1 expression in the NTS was markedly suppressed by microinjection into the NTS of adenovirus vectors carrying the relevant shRNA sequences against OA1. In animals treated with OA1 shRNA, depressor and bradycardic responses to DOPA, but not those to glutamate, microinjected into the NTS were blocked. Bilateral injections into the NTS of DOPA cyclohexyl ester, a competitive antagonist against OA1, suppressed phenylephrine-induced bradycardic responses without affecting blood pressure responses. CONCLUSION AND IMPLICATIONS:OA1 acted as a functional receptor for DOPA in the NTS, mediating depressor and bradycardic responses. Our results add to the evidence for a central neurotransmitter role for DOPA, without conversion to dopamine. 10.1111/bph.12459
    Cardiovascular actions of DOPA mediated by the gene product of ocular albinism 1. Goshima Yoshio,Nakamura Fumio,Masukawa Daiki,Chen Sandy,Koga Motokazu Journal of pharmacological sciences l-3,4-Dihydroxyphenylalanine (DOPA) is the metabolic precursor of dopamine, and the single most effective agent in the treatment of Parkinson's disease. One problem with DOPA therapy for Parkinson's disease is its cardiovascular side effects including hypotension and syncope, the underlying mechanisms of which are largely unknown. We proposed that DOPA is a neurotransmitter in the central nervous system, but specific receptors for DOPA had not been identified. Recently, the gene product of ocular albinism 1 (OA1) was shown to possess DOPA-binding activity. It was unknown, however, whether or not OA1 is responsible for the actions of DOPA itself. Immunohistochemical examination revealed that OA1 was expressed in the nucleus tractus solitarii (NTS). OA1-positive cells adjacent to tyrosine hydroxylase-positive cell bodies and nerve fibers were detected in the depressor sites of the NTS. OA1 knockdown using oa1-specific shRNA-adenovirus vectors in the NTS reduced the expression levels of OA1 in the NTS. The prior injection of the shRNA against OA1 suppressed the depressor and bradycardic responses to DOPA but not to glutamate in the NTS of anesthetized rats. Thus OA-1 is a functional receptor of DOPA in the NTS, which warrants reexamination of the mechanisms for the therapeutic and untoward actions of DOPA.
    Expression pattern of the ocular albinism type 1 (Oa1) gene in the murine retinal pigment epithelium. Surace E M,Angeletti B,Ballabio A,Marigo V Investigative ophthalmology & visual science PURPOSE:Mutations in the OA1 gene cause ocular albinism type 1 (OA1), an X-linked form of albinism affecting only the eye, with skin pigmentation appearing normal. To better understand the pathogenesis of this disease the time of onset and the pattern of expression of the mouse homolog of the OA1 gene were monitored during eye development. The localization of Oa1 mRNA was studied and compared with the expression of other genes involved in melanosomal biogenesis. METHODS:The Oa1 expression pattern during eye development and after birth was analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and in situ hybridization. Localization of Oa1 mRNA was compared with TYROSINASE: (TYR:), pink-eyed dilution (p), and Pax2 expression patterns. RESULTS:RT-PCR revealed that Oa1 expression began at embryonic day (E)10.5 and was maintained until adulthood. By in situ hybridization analysis Oa1 transcripts were detected in the retinal pigment epithelium (RPE) beginning at E10.5 in the dorsal part of the eyecup and in the same area where transcripts of other genes involved in pigmentation are found. Of note, the expression pattern of these genes was complementary to Pax2 expression, which was restricted to the ventral side of the optic cup. At later stages, expression of Oa1, TYR:, and p expanded to the entire RPE and ciliary body. CONCLUSIONS:Oa1 expression can be detected at early stages of RPE development, together with other genes involved in pigmentation defects. Oa1 is likely to play an important function in melanosomal biogenesis in the RPE beginning during the earliest steps of melanosome formation.
    GPR143 mutations in Chinese patients with ocular albinism type 1. Jia Xiuhua,Yuan Jin,Jia Xiaoyun,Ling Shiqi,Li Shiqiang,Guo Xiangming Molecular medicine reports The aim of the present study was to evaluate mutations of the G protein-coupled receptor 143 (GPR143) gene for ocular albinism type 1 (OA1) in Chinese patients. For the current study, 8 patients with OA1 were selected from the database of ocular genetic diseases. Genomic DNA of OA1 was prepared from venous leukocytes collected from the patients. Cycle sequencing was used to analyze the exons and adjacent introns of GPR143. The variation detected was analyzed by bidirectional DNA sequencing and further evaluated in 96 controls using heteroduplex‑single strand conformational polymorphism analysis. Additionally, slit lamp photography of anterior segment, fundus photography and optical coherence tomography (OCT) were performed to identify the clinical features of OA1. In five patients with OA1, 5 GPR143 gene mutations were identified and four of them there were novel mutations. The screening rate is 62.5%, including c.333G>A (p.W111X), c.353G>A (p.G118E) (known mutation), C.658+2T>G (splice mutation), c.215_216insCGCTGC (p.71‑72insAA) and c.17T>C (p. L6P). These mutations were absent in the 96 normal controls. Only one patient with OA1 in the present study was female. Patients with OA1 often have congenital nystagmus, refractive error, severe decline of visual acuity (from 0.1 to 0.4) and foveal hypoplasia. Different degrees of pigment loss were evident in the patients' iris and retina, whereas macular structure was not identified in the OCT examination. The findings of the present study expanded the gene mutation spectrum of GPR143 and investigated the clinical phenotype of patients with OA1 in the Chinese population. Additional evidence for clinical diagnosis was provided along with differential diagnosis and genetic counseling. 10.3892/mmr.2017.6366
    Aberrant splicing in the ocular albinism type 1 gene (OA1/GPR143) is corrected in vitro by morpholino antisense oligonucleotides. Vetrini Francesco,Tammaro Roberta,Bondanza Sergio,Surace Enrico M,Auricchio Alberto,De Luca Michele,Ballabio Andrea,Marigo Valeria Human mutation An intronic point mutation was identified in the ocular albinism type 1 (OA1) gene (HUGO symbol, GPR143) in a family with the X-linked form of ocular albinism. Interestingly, the mutation creates a new acceptor splice site in intron 7 of the OA1 gene. In addition to low levels of normally spliced mRNA product of the OA1 gene, the patient samples contained also an aberrantly spliced mRNA with a 165 bp fragment of intron 7 (from position +750 to +914) inserted between exons 7 and 8. The abnormal transcript contained a premature stop codon and was unstable, as revealed by Northern blot analysis. We defined that mutation NC_000023.8:g.25288G>A generated a consensus binding motif for the splicing factor enhancer ASF/SF2, which most likely favored transcription of the aberrant mRNA. Furthermore, it activated a cryptic donor-splice site causing the inclusion between exons 7 and 8 of the 165 bp intronic fragment. Thus, the aberrant splicing is most likely explained by the generation of a de novo splicing enhancer motif. Finally, to rescue OA1 expression in the patient's melanocytes, we designed an antisense morpholino modified oligonucleotide complementary to the mutant sequence. The morpholino oligonucleotide (MO) was able to rescue OA1 expression and restore the OA1 protein level in the patient's melanocytes through skipping of the aberrant inclusion. The use of MO demonstrated that the lack of OA1 was caused by the generation of a new splice site. Furthermore, this technique will lead to new approaches to correct splice site mutations that cause human diseases. 10.1002/humu.20303
    The ocular albinism type 1 (OA1) GPCR is ubiquitinated and its traffic requires endosomal sorting complex responsible for transport (ESCRT) function. Giordano Francesca,Simoes Sabrina,Raposo Graça Proceedings of the National Academy of Sciences of the United States of America The function of signaling receptors is tightly controlled by their intracellular trafficking. One major regulatory mechanism within the endo-lysosomal system required for receptor localization and down-regulation is protein modification by ubiquitination and downstream interactions with the endosomal sorting complex responsible for transport (ESCRT) machinery. Whether and how these mechanisms operate to regulate endosomal sorting of mammalian G protein-coupled receptors (GPCRs) remains unclear. Here, we explore the involvement of ubiquitin and ESCRTs in the trafficking of OA1, a pigment cell-specific GPCR, target of mutations in Ocular Albinism type 1, which localizes intracellularly to melanosomes to regulate their biogenesis. Using biochemical and morphological methods in combination with overexpression and inactivation approaches we show that OA1 is ubiquitinated and that its intracellular sorting and down-regulation requires functional ESCRT components. Depletion or overexpression of subunits of ESCRT-0, -I, and -III markedly inhibits OA1 degradation with concomitant retention within the modified endosomal system. Our data further show that OA1 ubiquitination is uniquely required for targeting to the intralumenal vesicles of multivesicular endosomes, thereby regulating the balance between down-regulation and delivery to melanosomes. This study highlights the role of ubiquitination and the ESCRT machinery in the intracellular trafficking of mammalian GPCRs and has implications for the physiopathology of ocular albinism type 1. 10.1073/pnas.1103381108
    The ocular albinism type 1 gene product, OA1, spans intracellular membranes 7 times. Sone Michio,Orlow Seth J Experimental eye research OA1 (GPR143) is a pigment cell-specific intracellular glycoprotein consisting of 404 amino acid residues that is mutated in patients with ocular albinism type 1, the most common form of ocular albinism. While its cellular localization is suggested to be endolysosomal and melanosomal, the physiological function of OA1 is currently unclear. Recent reports predicted that OA1 functions as a G protein coupled receptor (GPCR) based on its weak amino acid sequence similarity to known GPCRs, and on demonstration of GPCR activity in OA1 mislocalized to the plasma membrane. Because mislocalization of proteins is often caused by or induces defects in their proper folding/assembly, the significance of these studies remains unclear. A characteristic feature of GPCRs is a seven transmembrane domain structure. We analyzed the membrane topology of OA1 properly localized to intracellular lysosomal organelles in COS-1 cells. To accomplish this analysis, we established experimental conditions that allowed selective permeabilization of the plasma membrane while leaving endolysosomal membranes intact. Domains were mapped by the insertion of a hemagglutinin (HA) tag into the predicted cytosolic/luminal regions of OA1 molecule and the accessibility of tag to HA antibody was determined by immunofluorescence. HA-tagged lysosome associated membrane protein 1 (LAMP1), a type I membrane protein, was employed as a reporter for selective permeabilization of the plasma membrane. Our results show experimentally that the C-terminus of OA1 is directed to the cytoplasm and that the protein spans the intracellular membrane 7 times. Thus, OA1, properly localized intracellularly, is a 7 transmembrane domain integral membrane protein consistent with its putative role as an intracellular GPCR. 10.1016/j.exer.2007.08.016
    Regulation of melanosome number, shape and movement in the zebrafish retinal pigment epithelium by OA1 and PMEL. Burgoyne Thomas,O'Connor Marie N,Seabra Miguel C,Cutler Daniel F,Futter Clare E Journal of cell science Analysis of melanosome biogenesis in the retinal pigment epithelium (RPE) is challenging because it occurs predominantly in a short embryonic time window. Here, we show that the zebrafish provides an ideal model system for studying this process because in the RPE the timing of melanosome biogenesis facilitates molecular manipulation using morpholinos. Morpholino-mediated knockdown of OA1 (also known as GPR143), mutations in the human homologue of which cause the most common form of human ocular albinism, induces a major reduction in melanosome number, recapitulating a key feature of the mammalian disease where reduced melanosome numbers precede macromelanosome formation. We further show that PMEL, a key component of mammalian melanosome biogenesis, is required for the generation of cylindrical melanosomes in zebrafish, which in turn is required for melanosome movement into the apical processes and maintenance of photoreceptor integrity. Spherical and cylindrical melanosomes containing similar melanin volumes co-exist in the cell body but only cylindrical melanosomes enter the apical processes. Taken together, our findings indicate that melanosome number and shape are independently regulated and that melanosome shape controls a function in the RPE that depends on localisation in the apical processes. 10.1242/jcs.164400
    Involvement of OA1, an intracellular GPCR, and G alpha i3, its binding protein, in melanosomal biogenesis and optic pathway formation. Young Alejandra,Powelson Elisabeth B,Whitney Irene E,Raven Mary A,Nusinowitz Steven,Jiang Meisheng,Birnbaumer Lutz,Reese Benjamin E,Farber Debora B Investigative ophthalmology & visual science PURPOSE:Ocular albinism type 1 (OA1) is characterized by abnormalities in retinal pigment epithelium (RPE) melanosomes and misrouting of optic axons. The OA1 gene encodes a G-protein-coupled receptor (GPCR) that coimmunoprecipitates with the G alpha i-subunit of heterotrimeric G-proteins from human melanocyte extracts. This study was undertaken to test whether one of the G alpha i proteins, G alpha i3, signals in the same pathway as OA1 to regulate melanosome biogenesis and axonal growth through the optic chiasm. METHODS:Adult G alpha i3(-/-) and Oa1(-/-) mice were compared with their respective control mice (129Sv and B6/NCrl) to study the effects of the loss of G alpha i3 or Oa1 function. Light and electron microscopy were used to analyze the morphology of the retina and the size and density of RPE melanosomes, electroretinograms to study retinal function, and retrograde labeling to investigate the size of the uncrossed optic pathway. RESULTS:Although G alpha i3(-/-) and Oa1(-/-) photoreceptors were comparable to those of the corresponding control retinas, the density of their RPE melanosomes was significantly lower than in control RPEs. In addition, the RPE cells of G alpha i3(-/-) and Oa1(-/-) mice showed abnormal melanosomes that were far larger than the largest 129Sv and B6/NCrl melanosomes, respectively. Although G alpha i3(-/-) and Oa1(-/-) mice had normal results on electroretinography, retrograde labeling showed a significant reduction from control in the size of their ipsilateral retinofugal projections. CONCLUSIONS:These results indicate that G alpha i3, like Oa1, plays an important role in melanosome biogenesis. Furthermore, they suggest a common Oa1-G alpha i3 signaling pathway that ultimately affects axonal growth through the optic chiasm. 10.1167/iovs.08-1806
    L-DOPA is an endogenous ligand for OA1. Lopez Vanessa M,Decatur Christina L,Stamer W Daniel,Lynch Ronald M,McKay Brian S PLoS biology Albinism is a genetic defect characterized by a loss of pigmentation. The neurosensory retina, which is not pigmented, exhibits pathologic changes secondary to the loss of pigmentation in the retina pigment epithelium (RPE). How the loss of pigmentation in the RPE causes developmental defects in the adjacent neurosensory retina has not been determined, but offers a unique opportunity to investigate the interactions between these two important tissues. One of the genes that causes albinism encodes for an orphan GPCR (OA1) expressed only in pigmented cells, including the RPE. We investigated the function and signaling of OA1 in RPE and transfected cell lines. Our results indicate that OA1 is a selective L-DOPA receptor, with no measurable second messenger activity from two closely related compounds, tyrosine and dopamine. Radiolabeled ligand binding confirmed that OA1 exhibited a single, saturable binding site for L-DOPA. Dopamine competed with L-DOPA for the single OA1 binding site, suggesting it could function as an OA1 antagonist. OA1 response to L-DOPA was defined by several common measures of G-protein coupled receptor (GPCR) activation, including influx of intracellular calcium and recruitment of beta-arrestin. Further, inhibition of tyrosinase, the enzyme that makes L-DOPA, resulted in decreased PEDF secretion by RPE. Further, stimulation of OA1 in RPE with L-DOPA resulted in increased PEDF secretion. Taken together, our results illustrate an autocrine loop between OA1 and tyrosinase linked through L-DOPA, and this loop includes the secretion of at least one very potent retinal neurotrophic factor. OA1 is a selective L-DOPA receptor whose downstream effects govern spatial patterning of the developing retina. Our results suggest that the retinal consequences of albinism caused by changes in melanin synthetic machinery may be treated by L-DOPA supplementation. 10.1371/journal.pbio.0060236
    Roles of OA1 octopamine receptor and Dop1 dopamine receptor in mediating appetitive and aversive reinforcement revealed by RNAi studies. Awata Hiroko,Wakuda Ryo,Ishimaru Yoshiyasu,Matsuoka Yuji,Terao Kanta,Katata Satomi,Matsumoto Yukihisa,Hamanaka Yoshitaka,Noji Sumihare,Mito Taro,Mizunami Makoto Scientific reports Revealing reinforcing mechanisms in associative learning is important for elucidation of brain mechanisms of behavior. In mammals, dopamine neurons are thought to mediate both appetitive and aversive reinforcement signals. Studies using transgenic fruit-flies suggested that dopamine neurons mediate both appetitive and aversive reinforcements, through the Dop1 dopamine receptor, but our studies using octopamine and dopamine receptor antagonists and using Dop1 knockout crickets suggested that octopamine neurons mediate appetitive reinforcement and dopamine neurons mediate aversive reinforcement in associative learning in crickets. To fully resolve this issue, we examined the effects of silencing of expression of genes that code the OA1 octopamine receptor and Dop1 and Dop2 dopamine receptors by RNAi in crickets. OA1-silenced crickets exhibited impairment in appetitive learning with water but not in aversive learning with sodium chloride solution, while Dop1-silenced crickets exhibited impairment in aversive learning but not in appetitive learning. Dop2-silenced crickets showed normal scores in both appetitive learning and aversive learning. The results indicate that octopamine neurons mediate appetitive reinforcement via OA1 and that dopamine neurons mediate aversive reinforcement via Dop1 in crickets, providing decisive evidence that neurotransmitters and receptors that mediate appetitive reinforcement indeed differ among different species of insects. 10.1038/srep29696
    Melanoregulin, product of the dsu locus, links the BLOC-pathway and OA1 in organelle biogenesis. Rachel Rivka A,Nagashima Kunio,O'Sullivan T Norene,Frost Laura S,Stefano Frank P,Marigo Valeria,Boesze-Battaglia Kathleen PloS one Humans with Hermansky-Pudlak Syndrome (HPS) or ocular albinism (OA1) display abnormal aspects of organelle biogenesis. The multigenic disorder HPS displays broad defects in biogenesis of lysosome-related organelles including melanosomes, platelet dense granules, and lysosomes. A phenotype of ocular pigmentation in OA1 is a smaller number of macromelanosomes, in contrast to HPS, where in many cases the melanosomes are smaller than normal. In these studies we define the role of the Mreg(dsu) gene, which suppresses the coat color dilution of Myo5a, melanophilin, and Rab27a mutant mice in maintaining melanosome size and distribution. We show that the product of the Mreg(dsu) locus, melanoregulin (MREG), interacts both with members of the HPS BLOC-2 complex and with Oa1 in regulating melanosome size. Loss of MREG function facilitates increase in the size of micromelanosomes in the choroid of the HPS BLOC-2 mutants ruby, ruby2, and cocoa, while a transgenic mouse overexpressing melanoregulin corrects the size of retinal pigment epithelium (RPE) macromelanosomes in Oa1(ko/ko) mice. Collectively, these results suggest that MREG levels regulate pigment incorporation into melanosomes. Immunohistochemical analysis localizes melanoregulin not to melanosomes, but to small vesicles in the cytoplasm of the RPE, consistent with a role for this protein in regulating membrane interactions during melanosome biogenesis. These results provide the first link between the BLOC pathway and Oa1 in melanosome biogenesis, thus supporting the hypothesis that intracellular G-protein coupled receptors may be involved in the biogenesis of other organelles. Furthermore these studies provide the foundation for therapeutic approaches to correct the pigment defects in the RPE of HPS and OA1. 10.1371/journal.pone.0042446
    The ocular albinism type 1 (OA1) G-protein-coupled receptor functions with MART-1 at early stages of melanogenesis to control melanosome identity and composition. Giordano Francesca,Bonetti Ciro,Surace Enrico M,Marigo Valeria,Raposo Graça Human molecular genetics OA1 (GPR143; GPCR, G-protein-coupled receptor), the protein product of the ocular albinism type 1 gene, encodes a pigment-cell-specific GPCR that localizes intracellularly to melanosomes. OA1 mutations result in ocular albinism due to alterations in melanosome formation, suggesting that OA1 is a key player in the biogenesis of melanosomes. To address the function of OA1 in melanosome biogenesis, we have used siRNA inactivation and combined morphological and biochemical methods to investigate melanosome ultrastructure, melanosomal protein localization and expression in human pigmented melanocytic cells. OA1 loss of function leads to decreased pigmentation and causes formation of enlarged aberrant premelanosomes harboring disorganized fibrillar structures and displaying proteins of mature melanosomes and lysosomes at their membrane. Moreover, we show that OA1 interacts biochemically with the premelanosomal protein MART-1. Inactivation of MART-1 by siRNA leads to a decreased stability of OA1 and is accompanied by similar defects in premelanosome biogenesis and composition. These data show for the first time that melanosome composition and identity are regulated at early stages by OA1 and that MART-1 likely acts as an escort protein for this GPCR. 10.1093/hmg/ddp415
    Overexpression of the gene product of ocular albinism 1 (GPR143/OA1) but not its mutant forms inhibits neurite outgrowth in PC12 cells. Masukawa Daiki,Yamada Kaisei,Goshima Yoshio Journal of pharmacological sciences Neurite outgrowth is a complex differentiation process regulated by external and/or internal mechanisms. Among external mechanisms, G-protein coupled receptors (GPCRs) have been implicated in this process, but the pathways involved are not fully understood. L-3,4-dihydroxyphenylalanine (l-DOPA) is considered to be inert by itself, and to relieve Parkinson's disease through its conversion to dopamine. We have proposed that l-DOPA acts as a neurotransmitter. GPR143, the gene product of ocular albinism 1 (OA1), was identified as a receptor for l-DOPA. OA1 is an X-linked disorder characterized by all typical visual anomalies associated with hypopigmentation and optic misrouting, resulting in severe reduction of visual acuity. However, the molecular basis for this phenotype remains unknown. To study the function of GPR143, we investigated the phenotypic effect of overexpression of GPR143 in pheochromocytoma (PC12) cells treated with nerve growth factor. Overexpression of mouse GPR143 inhibited neurite outgrowth, and the effect was mitigated by l-DOPA cyclohexylester, an antagonist for l-DOPA. Furthermore, knockdown of G-protein Gα13 attenuated mouse GPR143 induced inhibition of neurite outgrowth. Human wild-type (wt) GPR143 also inhibited neurite outgrowth, but its mutants did not mimic the effect of wt GPR143. Our results provide a mechanism for axon guidance phenotype in ocular albinism 1. 10.1016/j.jphs.2019.09.002
    Specific interaction of Gαi3 with the Oa1 G-protein coupled receptor controls the size and density of melanosomes in retinal pigment epithelium. Young Alejandra,Jiang Meisheng,Wang Ying,Ahmedli Novruz B,Ramirez John,Reese Benjamin E,Birnbaumer Lutz,Farber Debora B PloS one BACKGROUND:Ocular albinism type 1, an X-linked disease characterized by the presence of enlarged melanosomes in the retinal pigment epithelium (RPE) and abnormal crossing of axons at the optic chiasm, is caused by mutations in the OA1 gene. The protein product of this gene is a G-protein-coupled receptor (GPCR) localized in RPE melanosomes. The Oa1-/- mouse model of ocular albinism reproduces the human disease. Oa1 has been shown to immunoprecipitate with the Gαi subunit of heterotrimeric G proteins from human skin melanocytes. However, the Gαi subfamily has three highly homologous members, Gαi1, Gαi2 and Gαi3 and it is possible that one or more of them partners with Oa1. We had previously shown by in-vivo studies that Gαi3-/- and Oa1-/- mice have similar RPE phenotype and decussation patterns. In this paper we analyze the specificity of the Oa1-Gαi interaction. METHODOLOGY:By using the genetic mouse models Gαi1-/-, Gαi2-/-, Gαi3-/- and the double knockout Gαi1-/-, Gαi3-/- that lack functional Gαi1, Gαi2, Gαi3, or both Gαi1 and Gαi3 proteins, respectively, we show that Gαi3 is critical for the maintenance of a normal melanosomal phenotype and that its absence is associated with changes in melanosomal size and density. GST-pull-down and immunoprecipitation assays conclusively demonstrate that Gαi3 is the only Gαi that binds to Oa1. Western blots show that Gαi3 expression is barely detectable in the Oa1-/- RPE, strongly supporting a previously unsuspected role for Gαi3 in melanosomal biogenesis. CONCLUSION:Our results identify the Oa1 transducer Gαi3 as the first downstream component in the Oa1 signaling pathway. 10.1371/journal.pone.0024376
    Mutations in GPR143/OA1 and ABCA4 Inform Interpretations of Short-Wavelength and Near-Infrared Fundus Autofluorescence. Paavo Maarjaliis,Zhao Jin,Kim Hye Jin,Lee Winston,Zernant Jana,Cai Carolyn,Allikmets Rando,Tsang Stephen H,Sparrow Janet R Investigative ophthalmology & visual science Purpose:We sought to advance interpretations and quantification of short-wavelength fundus autofluorescence (SW-AF) emitted from bisretinoid lipofuscin and near-infrared autofluoresence (NIR-AF) originating from melanin. Methods:Carriers of mutations in X-linked GPR143/OA1, a common form of ocular albinism; patients with confirmed mutations in ABCA4 conferring increased SW-AF; and subjects with healthy eyes were studied. SW-AF (488 nm excitation, 500-680 nm emission) and NIR-AF (excitation 787 nm, emission >830 nm) images were acquired with a confocal scanning laser ophthalmoscope. SW-AF images were analyzed for quantitative autofluoresence (qAF). Analogous methods of image acquisition and analysis were performed in albino and pigmented Abca4-/- mice and wild-type mice. Results:Quantitation of SW-AF (qAF), construction of qAF color-coded maps, and examination of NIR-AF images from GPR143/OA1 carriers revealed mosaics in which patches of fundus exhibiting NIR-AF signal had qAF levels within normal limits whereas the hypopigmented areas in the NIR-AF image corresponded to foci of elevated qAF. qAF also was increased in albino versus pigmented mice. Although melanin contributes to fundus infrared reflectance, the latter appeared to be uniform in en face reflectance images of GPR143/OA1-carriers. In patients diagnosed with ABCA4-associated disease, NIR-AF increased in tandem with increased qAF originating in bisretinoid lipofuscin. Similarly in Abca4-/- mice having increased SW-AF, NIR-AF was more pronounced than in wild-type mice. Conclusions:These studies corroborate RPE melanin as the major source of NIR-AF but also indicate that bisretinoid lipofuscin, when present at sufficient concentrations, contributes to the NIR-AF signal. Ocular melanin attenuates the SW-AF signal. 10.1167/iovs.18-24213
    A constitutively active Gαi3 protein corrects the abnormal retinal pigment epithelium phenotype of Oa1-/- mice. Young Alejandra,Wang Ying,Ahmedli Novruz B,Jiang Meisheng,Farber Debora B PloS one PURPOSE:Ocular Albinism type 1 (OA1) is a disease caused by mutations in the OA1 gene and characterized by the presence of macromelanosomes in the retinal pigment epithelium (RPE) as well as abnormal crossing of the optic axons at the optic chiasm. We showed in our previous studies in mice that Oa1 activates specifically Gαi3 in its signaling pathway and thus, hypothesized that a constitutively active Gαi3 in the RPE of Oa1-/- mice might keep on the Oa1 signaling cascade and prevent the formation of macromelanosomes. To test this hypothesis, we have generated transgenic mice that carry the constitutively active Gαi3 (Q204L) protein in the RPE of Oa1-/- mice and are now reporting the effects that the transgene produced on the Oa1-/- RPE phenotype. METHODS:Transgenic mice carrying RPE-specific expression of the constitutively active Gαi3 (Q204L) were generated by injecting fertilized eggs of Oa1-/- females with a lentivirus containing the Gαi3 (Q204L) cDNA. PCR, Southern blots, Western blots and confocal microscopy were used to confirm the presence of the transgene in the RPE of positive transgenic mice. Morphometrical analyses were performed using electron microscopy to compare the size and number of melanosomes per RPE area in putative Oa1-/-, Gαi3 (Q204L) transgenic mice with those of wild-type NCrl and Oa1-/- mice. RESULTS:We found a correlation between the presence of the constitutively active Gαi3 (Q204L) transgene and the rescue of the normal phenotype of RPE melanosomes in Oa1-/-, Gαi3 (Q204L) mice. These mice have higher density of melanosomes per RPE area and a larger number of small melanosomes than Oa1-/- mice, and their RPE phenotype is similar to that of wild-type mice. CONCLUSIONS:Our results show that a constitutively active Gαi3 protein can by-pass the lack of Oa1 protein in Oa1-/- mice and consequently rescue the RPE melanosomal phenotype. 10.1371/journal.pone.0076240
    Expression of OA1 limits the fusion of a subset of MVBs with lysosomes - a mechanism potentially involved in the initial biogenesis of melanosomes. Burgoyne Thomas,Jolly Rushee,Martin-Martin Belen,Seabra Miguel C,Piccirillo Rosanna,Schiaffino Maria Vittoria,Futter Clare E Journal of cell science Multivesicular endosomes/bodies (MVBs) deliver proteins, such as activated EGF receptor (EGFR), to the lysosome for degradation, and, in pigmented cells, MVBs containing PMEL are an initial stage in melanosome biogenesis. The mechanisms regulating numbers and fate of different populations of MVB are unclear. Here, we focus on the role of the G-protein-coupled receptor OA1 (also known as GPR143), which is expressed exclusively in pigmented cells and mutations in which cause the most common type of ocular albinism. When exogenously expressing PMEL, HeLa cells have been shown to form MVBs resembling early stage melanosomes. To focus on the role of OA1 in the initial stages of melanosome biogenesis we take advantage of the absence of the later stages of melanosome maturation in HeLa cells to determine whether OA1 activity can regulate MVB number and fate. Expression of wild-type but not OA1 mutants carrying inactivating mutations or deletions causes MVB numbers to increase. Whereas OA1 expression has no effect on delivery of EGFR-containing MVBs to the lysosome, it inhibits the lysosomal delivery of PMEL and PMEL-containing MVBs accumulate. We propose that OA1 activity delays delivery of PMEL-containing MVBs to the lysosome to allow time for melanin synthesis and commitment to melanosome biogenesis. 10.1242/jcs.128561
    Expression of ocular albinism 1 (OA1), 3, 4- dihydroxy- L-phenylalanine (DOPA) receptor, in both neuronal and non-neuronal organs. Fukuda Nobuhiko,Naito Saki,Masukawa Daiki,Kaneda Moemi,Miyamoto Hiroshi,Abe Takaya,Yamashita Yui,Endo Itaru,Nakamura Fumio,Goshima Yoshio Brain research Oa1 is the casual gene for ocular albinism-1 in humans. The gene product OA1, alternatively designated as GPR143, belongs to G-protein coupled receptors. It has been reported that OA1 is a specific receptor for 3, 4-dihydroxy- L-phenylalanine (DOPA) in retinal pigmental epithelium where DOPA facilitates the pigmentation via OA1 stimulation. We have recently shown that OA1 mediates DOPA-induced depressor response in rat nucleus tractus solitarii. However, the distribution and function of OA1 in other regions are largely unknown. We have generated oa1 knockout mice and examined OA1 expression in both neuronal and non-neuronal tissues by immunohistochemical analyses using anti-mouse OA1 monoclonal antibodies. In the telencephalon, OA1 was expressed in cerebral cortex and hippocampus. Predominant expression of OA1 was observed in the pyramidal neurons in these regions. OA1 was also expressed in habenular nucleus, hypothalamus, substantia nigra, and medulla oblongata. The expression of OA1 in the nucleus tractus solitarii of medulla oblongata may support the reduction of blood pressure by the microinjection of DOPA into this region. Outside of the nervous system, OA1 was expressed in heart, lung, liver, kidney and spleen. Abundant expression was observed in the renal tubules and the splenic capsules. These peripheral regions are innervated by numerous sympathetic nerve endings. In addition, substantia nigra contains a large population of dopaminergic neurons. Thus, the immunohistochemical analyses suggest that OA1 may modulate the monoaminergic functions in both peripheral and central nervous systems. 10.1016/j.brainres.2015.01.020