加载中

    Glutamate-Mediated Blood-Brain Barrier Opening: Implications for Neuroprotection and Drug Delivery. Vazana Udi,Veksler Ronel,Pell Gaby S,Prager Ofer,Fassler Michael,Chassidim Yoash,Roth Yiftach,Shahar Hamutal,Zangen Abraham,Raccah Ruggero,Onesti Emanuela,Ceccanti Marco,Colonnese Claudio,Santoro Antonio,Salvati Maurizio,D'Elia Alessandro,Nucciarelli Valter,Inghilleri Maurizio,Friedman Alon The Journal of neuroscience : the official journal of the Society for Neuroscience UNLABELLED:The blood-brain barrier is a highly selective anatomical and functional interface allowing a unique environment for neuro-glia networks. Blood-brain barrier dysfunction is common in most brain disorders and is associated with disease course and delayed complications. However, the mechanisms underlying blood-brain barrier opening are poorly understood. Here we demonstrate the role of the neurotransmitter glutamate in modulating early barrier permeability in vivo Using intravital microscopy, we show that recurrent seizures and the associated excessive glutamate release lead to increased vascular permeability in the rat cerebral cortex, through activation of NMDA receptors. NMDA receptor antagonists reduce barrier permeability in the peri-ischemic brain, whereas neuronal activation using high-intensity magnetic stimulation increases barrier permeability and facilitates drug delivery. Finally, we conducted a double-blind clinical trial in patients with malignant glial tumors, using contrast-enhanced magnetic resonance imaging to quantitatively assess blood-brain barrier permeability. We demonstrate the safety of stimulation that efficiently increased blood-brain barrier permeability in 10 of 15 patients with malignant glial tumors. We suggest a novel mechanism for the bidirectional modulation of brain vascular permeability toward increased drug delivery and prevention of delayed complications in brain disorders. SIGNIFICANCE STATEMENT:In this study, we reveal a new mechanism that governs blood-brain barrier (BBB) function in the rat cerebral cortex, and, by using the discovered mechanism, we demonstrate bidirectional control over brain endothelial permeability. Obviously, the clinical potential of manipulating BBB permeability for neuroprotection and drug delivery is immense, as we show in preclinical and proof-of-concept clinical studies. This study addresses an unmet need to induce transient BBB opening for drug delivery in patients with malignant brain tumors and effectively facilitate BBB closure in neurological disorders. 10.1523/JNEUROSCI.0587-16.2016
    Functional Expression of Choline Transporters in the Blood-Brain Barrier. Inazu Masato Nutrients Cholinergic neurons in the central nervous system play a vital role in higher brain functions, such as learning and memory. Choline is essential for the synthesis of the neurotransmitter acetylcholine by cholinergic neurons. The synthesis and metabolism of acetylcholine are important mechanisms for regulating neuronal activity. Choline is a positively charged quaternary ammonium compound that requires transporters to pass through the plasma membrane. Currently, there are three groups of choline transporters with different characteristics, such as affinity for choline, tissue distribution, and sodium dependence. They include (I) polyspecific organic cation transporters (OCT1-3: SLC22A1-3) with a low affinity for choline, (II) high-affinity choline transporter 1 (CHT1: SLC5A7), and (III) choline transporter-like proteins (CTL1-5: SLC44A1-5). Brain microvascular endothelial cells, which comprise part of the blood-brain barrier, take up extracellular choline via intermediate-affinity choline transporter-like protein 1 (CTL1) and low-affinity CTL2 transporters. CTL2 is responsible for excreting a high concentration of choline taken up by the brain microvascular endothelial cells on the brain side of the blood-brain barrier. CTL2 is also highly expressed in mitochondria and may be involved in the oxidative pathway of choline metabolism. Therefore, CTL1- and CTL2-mediated choline transport to the brain through the blood-brain barrier plays an essential role in various functions of the central nervous system by acting as the rate-limiting step of cholinergic neuronal activity. 10.3390/nu11102265
    Nonionotropic Action of Endothelial NMDA Receptors on Blood-Brain Barrier Permeability via Rho/ROCK-Mediated Phosphorylation of Myosin. Mehra Anupriya,Guérit Sylvaine,Macrez Richard,Gosselet Fabien,Sevin Emmanuel,Lebas Héloïse,Maubert Eric,De Vries Helga E,Bardou Isabelle,Vivien Denis,Docagne Fabian The Journal of neuroscience : the official journal of the Society for Neuroscience Increase in blood-brain barrier (BBB) permeability is a crucial step in neuroinflammatory processes. We previously showed that N Methyl D Aspartate Receptor (NMDARs), expressed on cerebral endothelial cells forming the BBB, regulate immune cell infiltration across this barrier in the mouse. Here, we describe the mechanism responsible for the action of NMDARs on BBB permeabilization. We report that mouse CNS endothelial NMDARs display the regulatory GluN3A subunit. This composition confers to NMDARs' unconventional properties: these receptors do not induce Ca influx but rather show nonionotropic properties. In inflammatory conditions, costimulation of human brain endothelial cells by NMDA agonists (NMDA or glycine) and the serine protease tissue plasminogen activator, previously shown to potentiate NMDAR activity, induces metabotropic signaling via the Rho/ROCK pathway. This pathway leads to an increase in permeability via phosphorylation of myosin light chain and subsequent shrinkage of human brain endothelial cells. Together, these data draw a link between NMDARs and the cytoskeleton in brain endothelial cells that regulates BBB permeability in inflammatory conditions. The authors describe how NMDARs expressed on endothelial cells regulate blood-brain barrier function via myosin light chain phosphorylation and increase in permeability. They report that these non-neuronal NMDARs display distinct structural, functional, and pharmacological features than their neuronal counterparts. 10.1523/JNEUROSCI.0969-19.2019