加载中

    Leptin regulates disc cartilage endplate degeneration and ossification through activation of the MAPK-ERK signalling pathway in vivo and in vitro. Han Ying-Chao,Ma Bin,Guo Song,Yang Mingjie,Li Li-Jun,Wang Shan-Jin,Tan Jun Journal of cellular and molecular medicine Recent findings demonstrate that leptin plays a significant role in chondrocyte and osteoblast differentiation. However, the mechanisms by which leptin acts on cartilage endplate (CEP) cells to give rise to calcification are still unclear. The aim of this study was to evaluate the effects of leptin that induced mineralization of CEP cells in vitro and in vivo. We constructed a rat model of lumbar disc degeneration and determined that leptin was highly expressed in the presence of CEP calcification. Rat CEP cells treated with or without leptin were used for in vitro analysis using RT-PCR and Western blotting to examine the expression of osteocalcin (OCN) and runt-related transcription factor 2 (Runx2). Both OCN and Runx2 expression levels were significantly increased in a dose- and time-dependent manner. Leptin activated ERK1/2 and STAT3 phosphorylation in a time-dependent manner. Inhibition of phosphorylated ERK1/2 using targeted siRNA suppressed leptin-induced OCN and Runx2 expression and blocked the formation of mineralized nodules in CEP cells. We further demonstrated that exogenous leptin induced matrix mineralization of CEP cells in vivo. We suggest that leptin promotes the osteoblastic differentiation of CEP cells via the MAPK/ERK signal transduction pathway and may be used to investigate the mechanisms of disc degeneration. 10.1111/jcmm.13398
    Oxidative damage induces apoptosis and promotes calcification in disc cartilage endplate cell through ROS/MAPK/NF-κB pathway: Implications for disc degeneration. Han Yingchao,Li Xinhua,Yan Meijun,Yang Mingjie,Wang Shanjin,Pan Jie,Li Lijun,Tan Jun Biochemical and biophysical research communications Cartilage endplate (CEP) cell calcification and apoptosis play a vital role in the intervertebral disc degeneration (IVDD). Oxidative stress is a key factor in inducing programmed cell death and cartilage calcification. However, the cell death and calcification of cartilage endplate cells under oxidative stress have never been described. The present study investigated the apoptosis and calcification in the cartilage endplate cell under oxidative stress induced by HO to understand the underlying mechanism of IVDD. The cartilage endplate cells isolated from human lumbar discs were subjected to different concentrations of HO for various time periods. The cell viability was determined by CCK-8 assay, whereas Western blot, immunofluorescence, and Alcian blue, Alizarin red, and Von Kossa staining evaluated the apoptosis and calcification. The level of mitochondria-specific reactive oxygen species (ROS) was quantified with an oxygen radical-sensitive probe-MitoSOX. The potential signaling pathways were investigated by Western blot after the addition of N-acetyl-l-cysteine (NAC). We found that the oxidative stress induced by HO increased the apoptosis and subsequently the calcification in the cartilage endplate cells through the ROS/p38/ERK/p65 pathway. The apoptosis and the calcification of the cartilage endplate cells induced by HO can be abolished by NAC. These results suggested that regulating the apoptosis and the calcification in the cartilage endplate cells under oxidative stress should be advantageous for the survival of cells and might delay the process of disc degeneration. 10.1016/j.bbrc.2017.03.111