加载中

    The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Safari Zahra,Gérard Philippe Cellular and molecular life sciences : CMLS NAFLD is currently the main cause of chronic liver disease in developed countries, and the number of NAFLD patients is growing worldwide. NAFLD often has similar symptoms to other metabolic disorders, including type 2 diabetes and obesity. Recently, the role of the gut microbiota in the pathophysiology of many diseases has been revealed. Regarding NAFLD, experiments using gut microbiota transplants to germ-free animal models showed that fatty liver disease development is determined by gut bacteria. Moreover, the perturbation of the composition of the gut microbiota has been observed in patients suffering from NAFLD. Numerous mechanisms relating the gut microbiome to NAFLD have been proposed, including the dysbiosis-induced dysregulation of gut endothelial barrier function that allows for the translocation of bacterial components and leads to hepatic inflammation. In addition, the various metabolites produced by the gut microbiota may impact the liver and thus modulate NAFLD susceptibility. Therefore, the manipulation of the gut microbiome by probiotics, prebiotics or synbiotics was shown to improve liver phenotype in NAFLD patients as well as in rodent models. Hence, further knowledge about the interactions among dysbiosis, environmental factors, and diet and their impacts on the gut-liver axis can improve the treatment of this life-threatening liver disease and its related disorders. 10.1007/s00018-019-03011-w
    The Gordian Knot of dysbiosis, obesity and NAFLD. Mehal Wajahat Z Nature reviews. Gastroenterology & hepatology The development of obesity and NAFLD is known to be determined by host genetics, diet and lack of exercise. In addition, the gut microbiota has been identified to influence the development of both obesity and NAFLD. Evidence for the role of the gut microbiota has been shown by preclinical studies of transfer of gut microbiota from lean and obese individuals, with the recipient developing the metabolic features of the donor. Many bidirectional interactions of the gut microbiota, including with food, bile and the intestinal epithelium, have been identified. These interactions might contribute to the distinct steps in the progression from lean to obese states, and to steatosis, steatohepatitis and eventually fibrosis. The predominant steps are efficient caloric extraction from the diet, intestinal epithelial damage and greater entry of bacterial components into the portal circulation. These steps result in activation of the innate immune system, liver inflammation and fibrosis. Fortunately, therapeutic interventions might not require a full understanding of these complex interactions. Although antibiotics are too unselective in their action, probiotics have shown efficacy in reversing obesity and NASH in experimental systems, and are under investigation in humans. 10.1038/nrgastro.2013.146