加载中

    Increased lipopolysaccharide content is positively correlated with glucocorticoid receptor-beta expression in chronic rhinosinusitis with nasal polyps. Wang Shui-Bin,Chen Shi-Ming,Zhu Ke-Sheng,Zhou Bin,Chen Long,Zou Xiao-Yan Immunity, inflammation and disease INTRODUCTION:Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common and frequently occurring disease of the upper respiratory tract. The nasal instillation of the Gram-negative (G ) bacterial product lipopolysaccharide (LPS) can induce not only acute sinusitis but also the development of CRSwNP in animal models. Nevertheless, the expression and distribution of LPS in patients with CRSwNP have not been investigated. And the study was to investigate the expression of LPS and its relationship with glucocorticoid receptors (GRs) in CRSwNP. METHODS:Multiple methods, including bacterial culture and immunohistochemistry, were used to detect and analyze nasal bacteria, plasma LPS content, and the levels of LPS and GR-α/β, cluster of differentiation 68 (CD68), and myeloperoxidase (MPO) expression, as well as their relationship in CRSwNP. RESULTS:The number of G bacteria and Escherichia coli (E. coli) was not significantly different between CRSwNP subjects and the controls. However, the positive rate of LPS was much higher than that of E. coli in CRSwNP subjects and was significantly higher in noneosinophilic CRSwNP subjects than in eosinophilic CRSwNP subjects. Moreover, the LPS levels were positively correlated with GR-β but not GR-α expression in CRSwNP. Immunofluorescence assays showed that LPS was mainly detected in CD68 macrophages and MPO neutrophils, in addition to histiocytes, in CRSwNP. CONCLUSIONS:Persistent LPS in CRSwNP can lead to unresolved mucosal inflammation, eventually leading to tissue remodeling and the development of CRSwNP. Our findings suggest that increased LPS content and possible resistance to glucocorticoids may be one of the important pathogenic mechanisms of G bacteria in CRSwNP. 10.1002/iid3.346
    Micro124-mediated AHR expression regulates the inflammatory response of chronic rhinosinusitis (CRS) with nasal polyps. Liu C C,Xia M,Zhang Y J,Jin P,Zhao L,Zhang J,Li T,Zhou X M,Tu Y Y,Kong F,Sun C,Shi L,Zhao M Q Biochemical and biophysical research communications MicroRNAs represent a component of the innate immune responses that can restrain inflammatory signaling, miR124 is an important member of inflammation-associated miRNAs, and abnormal miR124 expression is observed in many inflammatory diseases and immune disorders. However, the role and signaling pathways of miR124 in chronic rhinosinusitis with nasal polyps (CRSwNPs) have not been studied in detail. The aryl hydrocarbon receptor (AHR) is a ligand-inducible transcription factor that is highly conserved in evolution and plays important roles in the inflammatory response process. In our study, we describe the role of miR124 in the inflammatory response of CRS with nasal polyps. We found that the expression of miR124 was decreased in nasal polyps, and negatively correlated with the expression of AHR. MiR124 can inhibit AHR expression by directly target 3' untranslated region (3'-UTR) of AHR. To further investigate the relationship between miR124, AHR and CRS inflammatory response, we transfect HNEpC cells with miR124 mimic, miR124 inhibitors or siRNA of AHR, then all the results showed that miR124 could regulates cellular inflammatory response through negatively regulating AHR expression. This study demonstrated that the regulation of AHR expression by miR124 is critical to the development of inflammatory response in CRSwNPs. 10.1016/j.bbrc.2018.03.204
    IL-13 regulates human nasal epithelial cell differentiation via H3K4me3 modification. Yu Lei,Li Na,Zhang Jisheng,Jiang Yan Journal of inflammation research Introduction:Epigenetic regulation has been shown to play an important role in the development of inflammatory diseases, including chronic rhinosinusitis and nasal polyps. The latter are characterized by epithelial mis-differentiation and infiltration of inflammatory cytokines. H3K4me3 has been shown to be involved in regulating lineage commitment. However, the underlying mechanisms, especially in human nasal epithelial cells (HNEpC), remain underexplored. The objective of this study was to investigate the role of H3K4me3 in HNEpC differentiation treated with the Th2 cytokine IL-13. Patients and methods:The expression levels of mRNA and proteins were investigated using reverse transcription-polymerase chain reaction (RT-PCR) assays and Western blot in nasal polyp tissues and human nasal epithelial cells respectively. We measured these levels of H3K4me3, MLL1 and targeted genes compared with control subjects. Results:We demonstrate that expression of H3K4me3 and its methyltransferase MLL1 was significantly upregulated in IL-13-treated HNEpC. This elevation was also observed in nasal polyps. Expression of cilia-related transcription factors FOXJ1 and DNAI2 decreased, while goblet cell-derived genes CLCA1 and MUC5a increased upon IL-13 treatment. Mechanistically, knockdown of MLL1 restored expression of these four genes induced by IL-13. Conclusion:These findings suggest that H3K4me3 is a critical regulator in control of nasal epithelial cell differentiation. MLL1 may be a potential therapeutic target for nasal inflammatory diseases. 10.2147/JIR.S149156
    Wnt Signaling in Chronic Rhinosinusitis with Nasal Polyps. Böscke Robert,Vladar Eszter K,Könnecke Michael,Hüsing Birgit,Linke Robert,Pries Ralph,Reiling Norbert,Axelrod Jeffrey D,Nayak Jayakar V,Wollenberg Barbara American journal of respiratory cell and molecular biology The signaling pathways that sustain the disease process of chronic rhinosinusitis with nasal polyps (CRSwNP) remain poorly understood. We sought to determine the expression levels of Wnt signaling genes in CRSwNP and to study the role of the Wnt pathway in inflammation and epithelial remodeling in the nasal mucosa. Microarrays and real time-quantitative polymerase chain reaction comparing gene expression in matched NPs and inferior turbinates revealed that WNT2B, WNT3A, WNT4, WNT7A, WNT7B, and FZD2 were up-regulated and that FZD1, LRP5, LRP6, and WIF1 were down-regulated in NPs. Immunolabeling showed robust expression of Wnt ligands, nuclear β-catenin, and Axin-2 in NP tissue, suggesting that Wnt/β-catenin signaling is activated in NPs. We used primary human nasal epithelial cell (HNEpC) cultures to test the functional consequences of Wnt pathway activation. Monolayer HNEpCs treated with recombinant human WNT (rhWNT) 3A, but not with rhWNT4, had altered epithelial morphology and decreased adhesion, without loss of viability. We found that neither rhWNT3A nor rhWNT4 treatment induced proliferation. The expression and release of inflammatory cytokines IL-6 and granulocyte-macrophage colony-stimulating factor were increased after rhWNT3A exposure of HNEpCs. When differentiated at an air-liquid interface, rhWNT3A- and WNT agonist-, but not rhWNT4-treated HNEpCs, had abnormal epithelial architecture, failed to undergo motile ciliogenesis, and had defective noncanonical Wnt (planar cell polarity) signaling. On the basis of these results, we propose a model in which Wnt/β-catenin signaling sustains mucosal inflammation and leads to a spectrum of changes consistent with those seen during epithelial remodeling in NPs. 10.1165/rcmb.2016-0024OC
    Mir-142-3p Regulates Inflammatory Response by Contributing to Increased TNF-α in Chronic Rhinosinusitis With Nasal Polyposis. Qing Xiang,Zhang Yongquan,Peng Ya,He Guangxiang,Liu An,Liu Huowang Ear, nose, & throat journal OBJECTIVE:Previous studies suggested that microRNAs played an important role in the progression of inflammation and remodeling of chronic rhinosinusitis with nasal polyposis. However, the abnormal expression of microRNAs and regulation cytokine expression in nasal polyposis are not clear. METHOD:The miR-142-3p and tumor necrosis factor α (TNF-α) expression levels in chronic rhinosinusitis with nasal polyposis were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The miR-142-3p and TNF-α levels in human nasal epithelial cells (HNEpC) after stimulation by lipopolysaccharide (LPS) were detected by qRT-PCR. Moreover, HNEpCs were transfected by miR-142-3p mimics or inhibitor or cotransfected with si-TNF-α to evaluate the regulation of miR-142-3p on TNF-α which affects the production of inflammatory factors. RESULTS:The miR-142-3p and TNF-α were significantly higher in nasal mucosa of chronic rhinosinusitis with polyps patients compared to normal human. MiR-142-3p and TNF-α expression levels were increased after LPS stimulation in a dose- and time-dependent manner. Knockdown of miR-142-3p in HNEpCs downregulated TNF-α expression at both messenger RNA and protein levels. CONCLUSIONS:It is indicated that miR-142-3p may participate in the regulation of the body's inflammatory response through the LPS-TLR-TNF-α signaling pathway in chronic rhinosinusitis with nasal polyposis. 10.1177/0145561319847972
    The Impact of Pepsin on Human Nasal Epithelial Cells In Vitro: A Potential Mechanism for Extraesophageal Reflux Induced Chronic Rhinosinusitis. Southwood Jessica E,Hoekzema Craig R,Samuels Tina L,Wells Clive,Poetker David M,Johnston Nikki,Loehrl Todd A The Annals of otology, rhinology, and laryngology OBJECTIVES:To describe potential mechanisms by which pepsin induces inflammation in refractive chronic rhinosinusitis (CRS). Our hypothesis was that pepsin induces mitochondrial damage and cytokine expression in human nasal epithelial cells (HNEpC) in vitro. METHODS:Western blot was used to detect pepsin in sinus lavages from patients with CRS and controls. The HNEpC cells were treated with pepsin (pH 7; 0.1 mg/mL) for 1 or 16 hours and routine electron microscopy (EM) and MTT assay were performed. Cytokine ELISA was performed on media collected from HNEpC cells 16 hours following a 1-hour pepsin treatment. RESULTS:Pepsin was detected in sinus lavages from 4 out of 6 CRS patients and 0 out of 3 controls. The EM showed mitochondrial damage in pepsin-treated HNEpC cells but not in control cells. The MTT assay demonstrated reduced mitochondrial activity in pepsin-treated HNEpC cells compared to controls (P < .001). Pepsin increased IL-1A (P = .003) and IL-6 (P = .04) expression in HNEpC cells. CONCLUSIONS:Pepsin in sinus lavages from patients with CRS is consistent with previous studies. This study reveals the damaging effect of pepsin on mitochondria in nasal epithelial cells in vitro. Cytokines previously associated with CRS were elevated following pepsin treatment of HNEpC cells in vitro. These results demonstrate mechanisms by which pepsin may potentiate CRS. 10.1177/0003489415593556