加载中

    Magnetite pollution nanoparticles in the human brain. Maher Barbara A,Ahmed Imad A M,Karloukovski Vassil,MacLaren Donald A,Foulds Penelope G,Allsop David,Mann David M A,Torres-Jardón Ricardo,Calderon-Garciduenas Lilian Proceedings of the National Academy of Sciences of the United States of America Biologically formed nanoparticles of the strongly magnetic mineral, magnetite, were first detected in the human brain over 20 y ago [Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Proc Natl Acad Sci USA 89(16):7683-7687]. Magnetite can have potentially large impacts on the brain due to its unique combination of redox activity, surface charge, and strongly magnetic behavior. We used magnetic analyses and electron microscopy to identify the abundant presence in the brain of magnetite nanoparticles that are consistent with high-temperature formation, suggesting, therefore, an external, not internal, source. Comprising a separate nanoparticle population from the euhedral particles ascribed to endogenous sources, these brain magnetites are often found with other transition metal nanoparticles, and they display rounded crystal morphologies and fused surface textures, reflecting crystallization upon cooling from an initially heated, iron-bearing source material. Such high-temperature magnetite nanospheres are ubiquitous and abundant in airborne particulate matter pollution. They arise as combustion-derived, iron-rich particles, often associated with other transition metal particles, which condense and/or oxidize upon airborne release. Those magnetite pollutant particles which are <∼200 nm in diameter can enter the brain directly via the olfactory bulb. Their presence proves that externally sourced iron-bearing nanoparticles, rather than their soluble compounds, can be transported directly into the brain, where they may pose hazard to human health. 10.1073/pnas.1605941113
    Iron-responsive olfactory uptake of manganese improves motor function deficits associated with iron deficiency. Kim Jonghan,Li Yuan,Buckett Peter D,Böhlke Mark,Thompson Khristy J,Takahashi Masaya,Maher Timothy J,Wessling-Resnick Marianne PloS one Iron-responsive manganese uptake is increased in iron-deficient rats, suggesting that toxicity related to manganese exposure could be modified by iron status. To explore possible interactions, the distribution of intranasally-instilled manganese in control and iron-deficient rat brain was characterized by quantitative image analysis using T1-weighted magnetic resonance imaging (MRI). Manganese accumulation in the brain of iron-deficient rats was doubled after intranasal administration of MnCl(2) for 1- or 3-week. Enhanced manganese level was observed in specific brain regions of iron-deficient rats, including the striatum, hippocampus, and prefrontal cortex. Iron-deficient rats spent reduced time on a standard accelerating rotarod bar before falling and with lower peak speed compared to controls; unexpectedly, these measures of motor function significantly improved in iron-deficient rats intranasally-instilled with MnCl(2). Although tissue dopamine concentrations were similar in the striatum, dopamine transporter (DAT) and dopamine receptor D(1) (D1R) levels were reduced and dopamine receptor D(2) (D2R) levels were increased in manganese-instilled rats, suggesting that manganese-induced changes in post-synaptic dopaminergic signaling contribute to the compensatory effect. Enhanced olfactory manganese uptake during iron deficiency appears to be a programmed "rescue response" with beneficial influence on motor impairment due to low iron status. 10.1371/journal.pone.0033533
    Olfactory ferric and ferrous iron absorption in iron-deficient rats. Ruvin Kumara V M,Wessling-Resnick Marianne American journal of physiology. Lung cellular and molecular physiology The absorption of metals from the nasal cavity to the blood and the brain initiates an important route of occupational exposures leading to health risks. Divalent metal transporter-1 (DMT1) plays a significant role in the absorption of intranasally instilled manganese, but whether iron uptake would be mediated by the same pathway is unknown. In iron-deficient rats, blood (59)Fe levels after intranasal administration of the radioisotope in the ferrous form were significantly higher than those observed for iron-sufficient control rats. Similar results were obtained when ferric iron was instilled intranasally, and blood levels of (59)Fe were even greater in the iron-deficient rats compared with the amount of ferrous iron absorbed. Experiments with Belgrade (b/b) rats showed that DMT1 deficiency limited ferric iron uptake from the nasal cavity to the blood compared with +/b controls matched for iron deficiency. These results indicate that olfactory uptake of ferric iron by iron-deficient rats involves DMT1. Western blot experiments confirmed that DMT1 levels are significantly higher in iron-deficient rats compared with iron-sufficient controls in olfactory tissue. Thus the molecular mechanism of olfactory iron absorption is regulated by body iron status and involves DMT1. 10.1152/ajplung.00004.2012
    Chronic intranasal deferoxamine ameliorates motor defects and pathology in the α-synuclein rAAV Parkinson's model. Febbraro Fabia,Andersen Kathrine J,Sanchez-Guajardo Vanesa,Tentillier Noemie,Romero-Ramos Marina Experimental neurology Parkinson's disease is characterized by neuronal death in the substantia nigra and the presence of intracellular inclusions of α-synuclein in the Lewy bodies. Several lines of data support a role for iron in Parkinson's disease: iron is present in Lewy bodies, iron accumulates in the dopaminergic neurons in the substantia nigra, and Parkinson's disease is correlated with polymorphisms of several genes implicated in iron metabolism. Furthermore, iron can compromise the solubility of α-synuclein through direct interaction and can induce neurotoxicity in vitro. Here, we investigate the possible neuroprotective effect of the iron chelator deferoxamine in vivo to elucidate whether iron chelation can provide meaningful therapy for Parkinson's disease. Hence, we used a Parkinson's disease animal model based on unilateral injection of a recombinant adeno-associated viral vector encoding α-synuclein in the rat midbrain. Rats were treated with a novel deferoxamine delivery approach: 6 mg of the compound was administered intranasally three times a week for 3 or 7 weeks. The behavior of the animals and histopathological changes in the brain were analyzed. Our data show that although intranasal administration of deferoxamine in rats did not protect them from dopaminergic cell death, it did decrease the number of the pathological α-synuclein formations at the terminal level. In addition, this treatment resulted in changes in the immune response and an overall partial improvement in motor behavior. Taken together, our data show that in vivo iron chelation can modulate α-synuclein-induced pathology in the central nervous system. Our data suggest that chronic administration of intranasal deferoxamine may be a valid approach to limiting the mishandling of α-synuclein in the central nervous system observed in Parkinson's disease and slowing disease progression. 10.1016/j.expneurol.2013.03.017