加载中

    VEGF and FGF-2: Promising targets for the treatment of respiratory disorders. Laddha Ankit P,Kulkarni Yogesh A Respiratory medicine The endothelial cells play a crucial role in the progression of angiogenesis, which causes cell re-modulation, proliferation, adhesion, migration, invasion and survival. Angiogenic factors like cytokines, cell adhesion molecules, growth factors, vasoactive peptides, proteolytic enzymes (metalloproteinases) and plasminogen activators bind to their receptors on endothelial cells and activate the signal transduction pathways like epidermal growth factor receptor (EGFR phosphatidylinositol 3-kinase and (PI3K)/AKT/mammalian target of rapamycin (mTOR) which initiate the process of angiogenesis. Cytokines that stimulate angiogenesis include direct and indirect proangiogenic markers. The direct proangiogenic group of markers consists of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF-2) and hepatocyte growth factor (HGF) whereas the indirect proangiogenic markers include transforming growth factor-beta (TGF-β), interleukin 6 (IL-6), interleukin 8 (IL-8) and platelet-derived growth factor (PDGF). VEGF and FGF-2 are the strongest activators of angiogenesis which stimulate migration and proliferation of endothelial cells in existing vessels to generate and stabilize new blood vessels. VEGF is released in hypoxic conditions as an effect of the hypoxia-inducible factor (HIF-1α) and causes re-modulation and inflammation of bronchi cell. Cell re-modulation and inflammation leads to the development of various lung disorders like pulmonary hypertension, chronic obstructive pulmonary disease, asthma, fibrosis and lung cancer. This indicates that there is a firm link between overexpression of VEGF and FGF-2 with lung disorders. Various natural and synthetic drugs are available for reducing the overexpression of VEGF and FGF-2 which can be helpful in treating lung disorders. Researchers are still searching for new angiogenic inhibitors which can be helpful in the treatment of lung disorders. The present review emphasizes on molecular mechanisms and new drug discovery focused on VEGF and FGF-2 inhibitors and their role as anti-angiogenetic agents in lung disorders. 10.1016/j.rmed.2019.08.003
    Mesenchymal stromal cell-derived exosomes improve pulmonary hypertension through inhibition of pulmonary vascular remodeling. Zhang Shanshan,Liu Xiaoli,Ge Li Li,Li Kailin,Sun Yongchao,Wang Fang,Han Ying,Sun Chao,Wang Jue,Jiang Wen,Xin Qian,Xu Chaoyue,Chen Yuan,Chen Ou,Zhang Zhaohua,Luan Yun Respiratory research BACKGROUND:Pulmonary hypertension (PH) is a life-threatening disease characterized by pulmonary vascular remodeling, right ventricular hypertrophy and failure. So far no effective treatment exists for this disease; hence, novel approaches are urgently needed. The aim of the present research was to observe the treatment effect of mesenchymal stromal cell derived exosomes and reveal the mechanism. METHODS:Monocrotaline (MCT)-induced PH in rats and hypoxia-induced cell damage model were established, respectively. Exosomes derived from the supernatant of human umbilical cord mesenchymal stem cells (MSC-exo) were injected into MCT-PH model rat or added into the cells cultured medium. Immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot methods were used in vivo and vitro. RESULTS:The results showed that MSC-exo could significantly attenuate right ventricular (RV) hypertrophy and pulmonary vascular remodelling in MCT-PH rats. In the cell culture experiments, we found that MSC-exo could significantly inhibit hypoxia-induced pulmonary arterial endothelial cell (PAEC) apoptosis and pulmonary arterial smooth muscle cells (PASMC) proliferation. Furthermore, the pulmonary arterioles endothelial-to-mesenchymal transition (EndMT) was obviously suppressed. Moreover, the present study suggest that MSC-exo can significantly upregulate the expression of Wnt5a in MCT-PH rats and hypoxic pulmonary vascular cells. Furthermore, with Wnt5a gene silencing, the therapeutic effect of MSC-exo against hypoxia injury was restrained. CONCLUSIONS:Synthetically, our data provide a strong evidence for the therapeutic of MSC-exo on PH, more importantly, we confirmed that the mechanism was associated with up-regulation of the expression of Wnt5a. These results offer a theoretical basis for clinical prevention and treatment of PH. 10.1186/s12931-020-1331-4
    Molecular mechanisms of action of naringenin in chronic airway diseases. Chin Li Hian,Hon Chian Ming,Chellappan Dinesh Kumar,Chellian Jestin,Madheswaran Thiagarajan,Zeeshan Farrukh,Awasthi Rajendra,Aljabali Alaa Aa,Tambuwala Murtaza M,Dureja Harish,Negi Poonam,Kapoor Deepak N,Goyal Rohit,Paudel Keshav Raj,Satija Saurabh,Gupta Gaurav,Hsu Alan,Wark Peter,Mehta Meenu,Wadhwa Ridhima,Hansbro Philip Michael,Dua Kamal European journal of pharmacology Chronic airway inflammatory diseases are characterized by persistent proinflammatory responses in the respiratory tract. Although, several treatment strategies are currently available, lifelong therapy is necessary for most of these diseases. In recent years, phytophenols, namely, flavonoids, derived from fruits and vegetables have been gaining tremendous interest and have been extensively studied due to their low toxicological profile. Naringenin is a bioflavonoid abundantly found in citrus fruits. This substance has shown notable therapeutic potential in various diseases due to its promising diverse biological activities. In this review, we have attempted to review the published studies from the available literature, discussing the molecular level mechanisms of naringenin in different experimental models of airway inflammatory diseases including asthma, chronic obstructive pulmonary disease (COPD), lung cancer, pulmonary fibrosis and cystic fibrosis. Current evidences have proposed that the anti-inflammatory properties of naringenin play a major role in ameliorating inflammatory disease states. In addition, naringenin also possesses several other biological properties. Despite the proposed mechanisms suggesting remarkable therapeutic benefits, the clinical use of naringenin is, however, hampered by its low solubility and bioavailability. Furthermore, this review also discusses on the studies that utilise nanocarriers as a drug delivery system to address the issue of poor solubility. 10.1016/j.ejphar.2020.173139