加载中

    Utility and applications of orthotopic models of human non-small cell lung cancer (NSCLC) for the evaluation of novel and emerging cancer therapeutics. Justilien Verline,Fields Alan P Current protocols in pharmacology Lung cancer is a leading cause of cancer deaths worldwide. Despite advances in chemotherapy, radiation therapy, and surgery, lung cancer continues to have a low 5-year survival rate, highlighting a dire need for more effective means of prevention, diagnosis, prognosis, and treatment. Mouse models that recapitulate the clinical features of advanced human lung cancer are critical for testing novel therapeutic approaches. This unit describes a highly reproducible, easy-to-establish orthotopic murine model of lung cancer, provides methods for in vivo imaging and monitoring of tumor growth, and discusses the usefulness of this model for translational lung cancer research and the development of therapeutic strategies. 10.1002/0471141755.ph1427s62
    New metastatic model of human small-cell lung cancer by orthotopic transplantation in mice. Sakamoto Shuichi,Inoue Hiroyuki,Ohba Shunichi,Kohda Yasuko,Usami Ihomi,Masuda Tohru,Kawada Manabu,Nomoto Akio Cancer science Small-cell lung cancer (SCLC) is an aggressive cancer with high metastatic ability and novel strategies against the metastasis are urgently needed to improve SCLC treatment. However, the mechanism of metastasis of SCLC remains largely to be elucidated. For further studies of SCLC metastasis, we developed a new orthotopic transplantation model in mice. We established a GFP-labeled subline from the human SCLC cell line DMS273 and transplanted them orthotopically into the lung of nude mice with Matrigel. The GFP-labeled cells showed significant metastatic activity and formed metastatic foci in distant tissues such as bone, kidney, and brain, as observed in SCLC patients. From a bone metastasis focus of the mouse, we isolated another subline, termed G3H, with enhanced metastatic potential and higher hepatocyte growth factor (HGF) expression than the parental line. Further studies indicated that the HGF/MET signaling pathway was involved in in vitro motility and invasion activities of the G3H cells and treatments with MET inhibitors decreased formation of distant metastases in our orthotopic model using G3H cells. These data indicated that our model mimics the clinical aspect of SCLC such as metastatic tropism and autocrine of HGF/MET signaling. Compared with other orthotopic SCLC models, our model has a superior ability to form distant metastases. Therefore, our model will provide a valuable tool for the study of SCLC metastasis. 10.1111/cas.12624
    Feiji Recipe inhibits the growth of lung cancer by modulating T-cell immunity through indoleamine-2,3-dioxygenase pathway in an orthotopic implantation model. Luo Bin,Que Zu-Jun,Zhou Zhi-Yi,Wang Qing,Dong Chang-Sheng,Jiang Yi,Hu Bing,Shi Hui,Jin Yu,Liu Jian-Wen,Li He-Gen,Wang Lin,Tian Jian-Hui Journal of integrative medicine OBJECTIVE:Escape from the body's immune response is a basic characteristic of lung cancer, and indoleamine-2,3-dioxygenase (IDO) plays a key role in mediating immune escape of non-small-cell lung cancer, which leads to recurrence and metastasis. Feiji Recipe, a compound Chinese herbal medicine, has the effect of stabilizing lesions and prolonging survival in patients with lung cancer. The purpose of this study was to investigate the mechanisms underlying the anticancer properties of Feiji Recipe. METHODS:An orthotopic transplant model of mouse Lewis lung cancer, with stable expression of IDO gene, was established in C57BL/6 mice. Optical imaging was used to observe the effects of Feiji Recipe in the treatment of lung cancer in vivo. The effects of Feiji Recipe on the proliferation of mouse Lewis lung cancer cell line 2LL, 2LL-enhanced green fluorescent protein (2LL-EGFP) and 2LL-EGFP-IDO were investigated, and the apoptosis of T-cells was examined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide using flow cytometry. Chemical composition of Feiji Recipe was validated by high-performance liquid chromatography. RESULTS:Compared to the control group, the survival of animals treated with Feiji Recipe was significantly prolonged (P = 0.0074), and the IDO protein level decreased (P = 0.0072); moreover, the percentages of CD4CD25 T-cells and Foxp3 T-cells were significantly decreased (P < 0.05). The molecular mechanism of Feiji Recipe against lung cancer may relate to the regulation of immune cells, such as T-cells and regulatory T-cells. CONCLUSION:The molecular mechanism of Feiji Recipe in treatment of lung cancer is to restore the function of T-cells in the cancer microenvironment through interfering with the IDO pathway. 10.1016/j.joim.2018.04.008