Comparison of Mesenchymal Stromal Cells Isolated from Murine Adipose Tissue and Bone Marrow in the Treatment of Spinal Cord Injury. Takahashi Ai,Nakajima Hideaki,Uchida Kenzo,Takeura Naoto,Honjoh Kazuya,Watanabe Shuji,Kitade Makoto,Kokubo Yasuo,Johnson William E B,Matsumine Akihiko Cell transplantation The use of mesenchymal stromal cell (MSC) transplantation to repair the injured spinal cord has shown consistent benefits in preclinical models. However, the low survival rate of grafted MSC is one of the most important problems. In the injured spinal cord, transplanted cells are exposed to hypoxic conditions and exposed to nutritional deficiency caused by poor vascular supply. Also, the transplanted MSCs face cytotoxic stressors that cause cell death. The aim of this study was to compare adipose-derived MSCs (AD-MSCs) and bone marrow-derived MSCs (BM-MSCs) isolated from individual C57BL6/J mice in relation to: (i) cellular characteristics, (ii) tolerance to hypoxia, oxidative stress and serum-free conditions, and (iii) cellular survival rates after transplantation. AD-MSCs and BM-MSCs exhibited a similar cell surface marker profile, but expressed different levels of growth factors and cytokines. To research their relative stress tolerance, both types of stromal cells were incubated at 20.5% O or 1.0% O for 7 days. Results showed that AD-MSCs were more proliferative with greater culture viability under these hypoxic conditions than BM-MSCs. The MSCs were also incubated under HO-induced oxidative stress and in serum-free culture medium to induce stress. AD-MSCs were better able to tolerate these stress conditions than BM-MSCs; similarly when transplanted into the spinal cord injury region in vivo, AD-MSCs demonstrated a higher survival rate post transplantation Furthermore, this increased AD-MSC survival post transplantation was associated with preservation of axons and enhanced vascularization, as delineated by increases in anti-gamma isotype of protein kinase C and CD31 immunoreactivity, compared with the BM-MSC transplanted group. Hence, our results indicate that AD-MSCs are an attractive alternative to BM-MSCs for the treatment of severe spinal cord injury. However, it should be noted that the motor function was equally improved following moderate spinal cord injury in both groups, but with no significant improvement seen unfortunately following severe spinal cord injury in either group. 10.1177/0963689718780309
    Mesenchymal stem cells: Cell therapy and regeneration potential. Brown Christina,McKee Christina,Bakshi Shreeya,Walker Keegan,Hakman Eryk,Halassy Sophia,Svinarich David,Dodds Robert,Govind Chhabi K,Chaudhry G Rasul Journal of tissue engineering and regenerative medicine Rapid advances in the isolation of multipotent progenitor cells, routinely called mesenchymal stromal/stem cells (MSCs), from various human tissues and organs have provided impetus to the field of cell therapy and regenerative medicine. The most widely studied sources of MSCs include bone marrow, adipose, muscle, peripheral blood, umbilical cord, placenta, fetal tissue, and amniotic fluid. According to the standard definition of MSCs, these clonal cells adhere to plastic, express cluster of differentiation (CD) markers such as CD73, CD90, and CD105 markers, and can differentiate into adipogenic, chondrogenic, and osteogenic lineages in vitro. However, isolated MSCs have been reported to vary in their potency and self-renewal potential. As a result, the MSCs used for clinical applications often lead to variable or even conflicting results. The lack of uniform characterization methods both in vitro and in vivo also contributes to this confusion. Therefore, the name "MSCs" itself has been increasingly questioned lately. As the use of MSCs is expanding rapidly, there is an increasing need to understand the potential sources and specific potencies of MSCs. This review discusses and compares the characteristics of MSCs and suggests that the variations in their distinctive features are dependent on the source and method of isolation as well as epigenetic changes during maintenance and growth. We also discuss the potential opportunities and challenges of MSC research with the hope to stimulate their use for therapeutic and regenerative medicine. 10.1002/term.2914
    Biological functions of mesenchymal stem cells and clinical implications. Naji Abderrahim,Eitoku Masamitsu,Favier Benoit,Deschaseaux Frédéric,Rouas-Freiss Nathalie,Suganuma Narufumi Cellular and molecular life sciences : CMLS Mesenchymal stem cells (MSCs) are isolated from multiple biological tissues-adult bone marrow and adipose tissues and neonatal tissues such as umbilical cord and placenta. In vitro, MSCs show biological features of extensive proliferation ability and multipotency. Moreover, MSCs have trophic, homing/migration and immunosuppression functions that have been demonstrated both in vitro and in vivo. A number of clinical trials are using MSCs for therapeutic interventions in severe degenerative and/or inflammatory diseases, including Crohn's disease and graft-versus-host disease, alone or in combination with other drugs. MSCs are promising for therapeutic applications given the ease in obtaining them, their genetic stability, their poor immunogenicity and their curative properties for tissue repair and immunomodulation. The success of MSC therapy in degenerative and/or inflammatory diseases might depend on the robustness of the biological functions of MSCs, which should be linked to their therapeutic potency. Here, we outline the fundamental and advanced concepts of MSC biological features and underline the biological functions of MSCs in their basic and translational aspects in therapy for degenerative and/or inflammatory diseases. 10.1007/s00018-019-03125-1
    Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. Hu Chenxia,Li Lanjuan Journal of cellular and molecular medicine Various diseases and toxic factors easily impair cellular and organic functions in mammals. Organ transplantation is used to rescue organ function, but is limited by scarce resources. Mesenchymal stem cell (MSC)-based therapy carries promising potential in regenerative medicine because of the self-renewal and multilineage potency of MSCs; however, MSCs may lose biological functions after isolation and cultivation for a long time in vitro. Moreover, after they are injected in vivo and migrate into the damaged tissues or organs, they encounter a harsh environment coupled with death signals due to the inadequate tensegrity structure between the cells and matrix. Preconditioning, genetic modification and optimization of MSC culture conditions are key strategies to improve MSC functions in vitro and in vivo, and all of these procedures will contribute to improving MSC transplantation efficacy in tissue engineering and regenerative medicine. Preconditioning with various physical, chemical and biological factors is possible to preserve the stemness of MSCs for further application in studies and clinical tests. In this review, we mainly focus on preconditioning and the corresponding mechanisms for improving MSC activities in vitro and in vivo; we provide a glimpse into the promotion of MSC-based cell therapy development for regenerative medicine. As a promising consequence, MSC transplantation can be applied for the treatment of some terminal diseases and can prolong the survival time of patients in the near future. 10.1111/jcmm.13492
    Challenges for mesenchymal stromal cell therapies. Martin Ivan,Galipeau Jacques,Kessler Charles,Le Blanc Katarina,Dazzi Francesco Science translational medicine Clinical trials of mesenchymal stromal cell therapies reveal a challenging heterogeneous landscape, including diverse therapeutic targets, patient categories, cell sources, and potential mechanisms of action. 10.1126/scitranslmed.aat2189
    Manufacturing of primed mesenchymal stromal cells for therapy. Yin James Q,Zhu Jun,Ankrum James A Nature biomedical engineering Mesenchymal stromal cells (MSCs) for basic research and clinical applications are manufactured and developed as unique cell products by many different manufacturers and laboratories, often under different conditions. The lack of standardization of MSC identity has limited consensus around which MSC properties are relevant for specific outcomes. In this Review, we examine how the choice of media, cell source, culture environment and storage affects the phenotype and clinical utility of MSC-based products, and discuss the techniques better suited to prime MSCs with specific phenotypes of interest and the need for the continued development of standardized assays that provide quality assurance for clinical-grade MSCs. Bioequivalence between cell products and batches must be investigated rather than assumed, so that the diversity of phenotypes between differing MSC products can be accounted for to identify products with the highest therapeutic potential and to preserve their safety in clinical treatments. 10.1038/s41551-018-0325-8
    Stem cells as drug delivery methods: application of stem cell secretome for regeneration. Tran Christine,Damaser Margot S Advanced drug delivery reviews Mesenchymal stem cells (MSCs) are a unique cell population defined by their ability to indefinitely self-renew, differentiate into multiple cell lineages, and form clonal cell populations. It was originally thought that this ability for broad plasticity defined the therapeutic potential of MSCs. However, an expanding body of recent literature has brought growing awareness to the remarkable array of bioactive molecules produced by stem cells. This protein milieu or "secretome" comprises a diverse host of cytokines, chemokines, angiogenic factors, and growth factors. The autocrine/paracrine role of these molecules is being increasingly recognized as key to the regulation of many physiological processes including directing endogenous and progenitor cells to sites of injury as well as mediating apoptosis, scarring, and tissue revascularization. In fact, the immunomodulatory and paracrine role of these molecules may predominantly account for the therapeutic effects of MSCs given that many in vitro and in vivo studies have demonstrated limited stem cell engraftment at the site of injury. While the study of such a vast protein array remains challenging, technological advances in the field of proteomics have greatly facilitated our ability to analyze and characterize the stem cell secretome. Thus, stem cells can be considered as tunable pharmacological storehouses useful for combinatorial drug manufacture and delivery. As a cell-free option for regenerative medicine therapies, stem cell secretome has shown great potential in a variety of clinical applications including the restoration of function in cardiovascular, neurodegenerative, oncologic, and genitourinary pathologies. 10.1016/j.addr.2014.10.007
    Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities. Galipeau Jacques,Sensébé Luc Cell stem cell Mesenchymal stromal cells (MSCs) have been the subject of clinical trials for more than a generation, and the outcomes of advanced clinical trials have fallen short of expectations raised by encouraging pre-clinical animal data in a wide array of disease models. In this Perspective, important biological and pharmacological disparities in pre-clinical research and human translational studies are highlighted, and analyses of clinical trial failures and recent successes provide a rational pathway to MSC regulatory approval and deployment for disorders with unmet medical needs. 10.1016/j.stem.2018.05.004
    Epigenetic Regulation of Mesenchymal Stem Cell Homeostasis. Sui Bing-Dong,Zheng Chen-Xi,Li Meng,Jin Yan,Hu Cheng-Hu Trends in cell biology Mesenchymal stem cells (MSCs) have putative roles in maintaining adult tissue health, and the functional decline of MSCs has emerged as a crucial pathophysiological driver of various diseases. Epigenetic regulation is essential for establishing and preserving MSC homeostasis in vivo. Furthermore, growing evidence suggests that epigenetic dysregulation contributes to age- and disease-associated MSC alterations. Epigenetic marks in MSCs can be amplified through self-renewal divisions and transmitted to differentiated progeny, further perpetuating their role in tissue maintenance and pathogenesis. We review the epigenetic regulation of MSC homeostasis, emphasizing its contributions to organismal health and disease. Understanding these epigenetic mechanisms could hold promise as targets for MSC-mediated regenerative therapies. 10.1016/j.tcb.2019.11.006
    Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Shi Yufang,Wang Yu,Li Qing,Liu Keli,Hou Jianquan,Shao Changshun,Wang Ying Nature reviews. Nephrology Mesenchymal stem cells (MSCs; also referred to as mesenchymal stromal cells) have attracted much attention for their ability to regulate inflammatory processes. Their therapeutic potential is currently being investigated in various degenerative and inflammatory disorders such as Crohn's disease, graft-versus-host disease, diabetic nephropathy and organ fibrosis. The mechanisms by which MSCs exert their therapeutic effects are multifaceted, but in general, these cells are thought to enable damaged tissues to form a balanced inflammatory and regenerative microenvironment in the presence of vigorous inflammation. Studies over the past few years have demonstrated that when exposed to an inflammatory environment, MSCs can orchestrate local and systemic innate and adaptive immune responses through the release of various mediators, including immunosuppressive molecules, growth factors, exosomes, chemokines, complement components and various metabolites. Interestingly, even nonviable MSCs can exert beneficial effects, with apoptotic MSCs showing immunosuppressive functions in vivo. Because the immunomodulatory capabilities of MSCs are not constitutive but rather are licensed by inflammatory cytokines, the net outcomes of MSC activation might vary depending on the levels and the types of inflammation within the residing tissues. Here, we review current understanding of the immunomodulatory mechanisms of MSCs and the issues related to their therapeutic applications. 10.1038/s41581-018-0023-5