Paclitaxel Reduces Tumor Growth by Reprogramming Tumor-Associated Macrophages to an M1 Profile in a TLR4-Dependent Manner. Wanderley Carlos W,Colón David F,Luiz João Paulo M,Oliveira Francisco F,Viacava Paula R,Leite Caio A,Pereira Janaina A,Silva Camila M,Silva Cassia R,Silva Rangel L,Speck-Hernandez Cesar A,Mota José M,Alves-Filho José C,Lima-Junior Roberto C,Cunha Thiago M,Cunha Fernando Q Cancer research Paclitaxel is an antineoplastic agent widely used to treat several solid tumor types. The primary mechanism of action of paclitaxel is based on microtubule stabilization inducing cell-cycle arrest. Here, we use several tumor models to show that paclitaxel not only induces tumor cell-cycle arrest, but also promotes antitumor immunity. , paclitaxel reprogrammed M2-polarized macrophages to the M1-like phenotype in a TLR4-dependent manner, similarly to LPS. Paclitaxel also modulated the tumor-associated macrophage (TAM) profile in mouse models of breast and melanoma tumors; gene expression analysis showed that paclitaxel altered the M2-like signature of TAMs toward an M1-like profile. In mice selectively lacking TLR4 on myeloid cells, for example, macrophages (LysM-Cre/TLR4), the antitumor effect of paclitaxel was attenuated. Gene expression analysis of tumor samples from patients with ovarian cancer before and after treatment with paclitaxel detected an enrichment of genes linked to the M1 macrophage activation profile (IFNγ-stimulated macrophages). These findings indicate that paclitaxel skews TAMs toward an immunocompetent profile via TLR4, which might contribute to the antitumor effect of paclitaxel and provide a rationale for new combination regimens comprising paclitaxel and immunotherapies as an anticancer treatment. This study provides new evidence that the antitumor effect of paclitaxel occurs in part via reactivation of the immune response against cancer, guiding tumor-associated macrophages toward the M1-like antitumor phenotype. http://cancerres.aacrjournals.org/content/canres/78/20/5891/F1.large.jpg . 10.1158/0008-5472.CAN-17-3480
    AhR controls redox homeostasis and shapes the tumor microenvironment in BRCA1-associated breast cancer. Kubli Shawn P,Bassi Christian,Roux Cecilia,Wakeham Andrew,Göbl Christoph,Zhou Wenjing,Jafari Soode Moghadas,Snow Bryan,Jones Lisa,Palomero Luis,Thu Kelsie L,Cassetta Luca,Soong Daniel,Berger Thorsten,Ramachandran Parameswaran,Baniasadi Shakiba P,Duncan Gordon,Lindzen Moshit,Yarden Yosef,Herranz Carmen,Lazaro Conxi,Chu Mandy F,Haight Jillian,Tinto Paul,Silvester Jennifer,Cescon David W,Petit Anna,Pettersson Sven,Pollard Jeffrey W,Mak Tak W,Pujana Miguel A,Cappello Paola,Gorrini Chiara Proceedings of the National Academy of Sciences of the United States of America Cancer cells have higher reactive oxygen species (ROS) than normal cells, due to genetic and metabolic alterations. An emerging scenario is that cancer cells increase ROS to activate protumorigenic signaling while activating antioxidant pathways to maintain redox homeostasis. Here we show that, in basal-like and BRCA1-related breast cancer (BC), ROS levels correlate with the expression and activity of the transcription factor aryl hydrocarbon receptor (AhR). Mechanistically, ROS triggers AhR nuclear accumulation and activation to promote the transcription of both antioxidant enzymes and the epidermal growth factor receptor (EGFR) ligand, amphiregulin (AREG). In a mouse model of BRCA1-related BC, cancer-associated AhR and AREG control tumor growth and production of chemokines to attract monocytes and activate proangiogenic function of macrophages in the tumor microenvironment. Interestingly, the expression of these chemokines as well as infiltration of monocyte-lineage cells (monocyte and macrophages) positively correlated with ROS levels in basal-like BC. These data support the existence of a coordinated link between cancer-intrinsic ROS regulation and the features of tumor microenvironment. Therapeutically, chemical inhibition of AhR activity sensitizes human BC models to Erlotinib, a selective EGFR tyrosine kinase inhibitor, suggesting a promising combinatorial anticancer effect of AhR and EGFR pathway inhibition. Thus, AhR represents an attractive target to inhibit redox homeostasis and modulate the tumor promoting microenvironment of basal-like and BRCA1-associated BC. 10.1073/pnas.1815126116
    Self-Assembled Redox Dual-Responsive Prodrug-Nanosystem Formed by Single Thioether-Bridged Paclitaxel-Fatty Acid Conjugate for Cancer Chemotherapy. Luo Cong,Sun Jin,Liu Dan,Sun Bingjun,Miao Lei,Musetti Sara,Li Jing,Han Xiaopeng,Du Yuqian,Li Lin,Huang Leaf,He Zhonggui Nano letters Chemotherapeutic efficacy can be greatly improved by developing nanoparticulate drug delivery systems (nano-DDS) with high drug loading capacity and smart stimulus-triggered drug release in tumor cells. Herein, we report a novel redox dual-responsive prodrug-nanosystem self-assembled by hydrophobic small-molecule conjugates of paclitaxel (PTX) and oleic acid (OA). Thioether linked conjugates (PTX-S-OA) and dithioether inserted conjugates (PTX-2S-OA) are designed to respond to the redox-heterogeneity in tumor. Dithioether has been reported to show redox dual-responsiveness, but we find that PTX-S-OA exhibits superior redox sensitivity over PTX-2S-OA, achieving more rapid and selective release of free PTX from the prodrug nanoassemblies triggered by redox stimuli. PEGylated PTX-S-OA nanoassemblies, with impressively high drug loading (57.4%), exhibit potent antitumor activity in a human epidermoid carcinoma xenograft. This novel prodrug-nanosystem addresses concerns related to the low drug loading and inefficient drug release from hydrophobic prodrugs of PTX, and provides possibilities for the development of redox dual-sensitive conjugates or polymers for efficient anticancer drug delivery. 10.1021/acs.nanolett.6b01632
    Tannic acid-inspired paclitaxel nanoparticles for enhanced anticancer effects in breast cancer cells. Chowdhury Pallabita,Nagesh Prashanth K B,Hatami Elham,Wagh Santosh,Dan Nirnoy,Tripathi Manish K,Khan Sheema,Hafeez Bilal B,Meibohm Bernd,Chauhan Subhash C,Jaggi Meena,Yallapu Murali M Journal of colloid and interface science Paclitaxel (PTX) is a gold standard chemotherapeutic agent for breast, ovarian, pancreatic and non-small cell lung carcinoma. However, in clinical use PTX can have adverse side effects or inadequate pharmacodynamic parameters, limiting its use. Nanotechnology is often employed to reduce the therapeutic dosage required for effective therapy, while also minimizing the systemic side effects of chemotherapy drugs. However, there is no nanoformulation of paclitaxel with chemosensitization motifs built in. With this objective, we screened eleven pharmaceutical excipients to develop an alternative paclitaxel nanoformulation using a self-assembly method. Based on the screening results, we observed tannic acid possesses unique properties to produce a paclitaxel nanoparticle formulation, i.e., tannic acid-paclitaxel nanoparticles. This stable TAP nanoformulation, referred to as TAP nanoparticles (TAP NPs), showed a spherical shape of ~ 102 nm and negative zeta potential of ~ -8.85. The presence of PTX in TAP NPs was confirmed by Fourier Transform Infrared (FTIR) spectra, thermogravimetric analyzer (TGA), and X-ray diffraction (XRD). Encapsulation efficiency of PTX in TAP NPs was determined to be ≥96%. Intracellular drug uptake of plain drug PTX on breast cancer cells (MDA-MB-231) shows more or less constant drug levels in 2 to 6 h, suggesting drug efflux by the P-gp transporters, over TAP NPs, in which PTX uptake was more than 95.52 ± 11.01% in 6 h, as analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Various biological assays such as proliferation, clonogenic formation, invasion, and migration confirm superior anticancer effects of TAP NPs over plain PTX at all tested concentrations. P-gp expression, beta-tubulin stabilization, Western blot, and microarray analysis further confirm the improved therapeutic potential of TAP NPs. These results suggest that the TAP nanoformulation provides an important reference for developing a therapeutic nanoformulation affording pronounced, enhanced effects in breast cancer therapy. 10.1016/j.jcis.2018.09.072