logo logo
Biological contamination and its chemical control in microalgal mass cultures. Molina Denisse,de Carvalho Júlio Cesar,Júnior Antônio Irineudo Magalhães,Faulds Craig,Bertrand Emmanuel,Soccol Carlos Ricardo Applied microbiology and biotechnology Microalgae are versatile sources of bioproducts, a solution for many environmental problems. However, and despite its importance, one of the main problems in large-scale cultures-the presence of contaminants-is rarely systematically approached. Contamination, or the presence of undesirable organisms in a culture, is deleterious for the culture and frequently leads to culture crashes. To avoid contamination, closed systems can be used; however, for very large-scale open systems, contamination is unavoidable and remediation procedures are necessary-ranging from physicochemical treatment to addition of biocidal substances. In all cases, early detection and culture monitoring are paramount. This article describes the biological contaminants, contamination mechanisms, and control systems used in open and closed cultures, discussing the latest advances and techniques in the area. It also discusses the complex interactions of algae with other microorganisms that can be expected in cultivation systems. 10.1007/s00253-019-10193-7
Functional Agents to Biologically Control Deoxynivalenol Contamination in Cereal Grains. Frontiers in microbiology Mycotoxins, as microbial secondary metabolites, frequently contaminate cereal grains and pose a serious threat to human and animal health around the globe. Deoxynivalenol (DON), a commonly detected Fusarium mycotoxin, has drawn utmost attention due to high exposure levels and contamination frequency in the food chain. Biological control is emerging as a promising technology for the management of DON contamination. Functional biological control agents (BCAs), which include antagonistic microbes, natural fungicides derived from plants and detoxification enzymes, can be used to control DON contamination at different stages of grain production. In this review, studies regarding different biological agents for DON control in recent years are summarized for the first time. Furthermore, this article highlights the significance of BCAs for controlling DON contamination, as well as the need for more practical and efficient BCAs concerning food safety. 10.3389/fmicb.2016.00395
Challenges and opportunities of the bio-pesticides production by solid-state fermentation: filamentous fungi as a model. De la Cruz Quiroz Reynaldo,Roussos Sevastianos,Hernández Daniel,Rodríguez Raúl,Castillo Francisco,Aguilar Cristóbal N Critical reviews in biotechnology In recent years, production and use of bio-pesticides have increasing and replacing some synthetic chemical pesticides applied to food commodities. In this review, biological control is focused as an alternative, to some synthetic chemical treatments that cause environmental, human health, and food quality risks. In addition, several phytopathogenic microorganisms have developed resistance to some of these synthetic chemicals and become more difficult to control. Worldwide, the bio-pesticides market is growing annually at a rate of 44% in North America, 20% in Europe and Oceania, 10% in Latin and South American countries and 6% in Asia. Use of agro-industrial wastes and solid-state fermentation (SSF) technology offers an alternative to bio-pesticide production with advantages versus conventional submerged fermentations, as reduced cost and energy consumption, low production of residual water and high stability products. In this review, recent data about state of art regarding bio-pesticides production under SSF on agroindustrial wastes will be discussed. SSF can be defined as a microbial process that generally occurs on solid material in the absence of free water. This material has the ability to absorb water with or without soluble nutrients, since the substrate must have water to support the microorganism's growth and metabolism. Changes in water content are analyzed in order to select the conditions for a future process, where water stress can be combined with the best spore production conditions, obtaining in this way an inexpensive biotechnological option for modern agriculture in developing countries. 10.3109/07388551.2013.857292
Recombinant entomopathogenic agents: a review of biotechnological approaches to pest insect control. Karabörklü Salih,Azizoglu Ugur,Azizoglu Zehra Busra World journal of microbiology & biotechnology Although the use of chemical pesticides has decreased in recent years, it is still a common method of pest control. However, chemical use leads to challenging problems. The harm caused by these chemicals and the length of time that they will remain in the environment is of great concern to the future and safety of humans. Therefore, developing new pest control agents that are safer and environmentally compatible, as well as assuring their widespread use is important. Entomopathogenic agents are microorganisms that play an important role in the biological control of pest insects and are eco-friendly alternatives to chemical control. They consist of viruses (non-cellular organisms), bacteria (prokaryotic organisms), fungi and protists (eukaryotic organisms), and nematodes (multicellular organisms). Genetic modification (recombinant technology) provides potential new methods for developing entomopathogens to manage pests. In this review, we focus on the important roles of recombinant entomopathogens in terms of pest insect control, placing them into perspective with other views to discuss, examine and evaluate the use of entomopathogenic agents in biological control. 10.1007/s11274-017-2397-0
Progress in Biological Control of Weeds with Plant Pathogens. Morin Louise Annual review of phytopathology Plant pathogens have played an important role in weed biological control since the 1970s. So far, 36 fungal pathogens have been authorized for introduction across 18 countries for the classical biological control of weeds. Their safety record has been excellent, but questions continue to be asked about the risk that they could transfer to other plants. Quantitative data documenting their impact on the weed populations are still limited. Of the 15 bioherbicides based on living microorganisms that have ever been registered, only two were commercially available at the time of this review. The development and commercialization of bioherbicides in affluent countries are still plagued by technological hurdles and limited market potential. Not-for-profit small-scale production and distribution systems for bioherbicides in low-income countries may have potential as an inexpensive approach to controlling pervasive weeds. The types of research underpinning biological control approaches and challenges encountered are highlighted using specific examples. 10.1146/annurev-phyto-010820-012823