logo logo
A bioenergetic shift is required for spermatogonial differentiation. Cell discovery A bioenergetic balance between glycolysis and mitochondrial respiration is particularly important for stem cell fate specification. It however remains to be determined whether undifferentiated spermatogonia switch their preference for bioenergy production during differentiation. In this study, we found that ATP generation in spermatogonia was gradually increased upon retinoic acid (RA)-induced differentiation. To accommodate this elevated energy demand, RA signaling concomitantly switched ATP production in spermatogonia from glycolysis to mitochondrial respiration, accompanied by increased levels of reactive oxygen species. Disrupting mitochondrial respiration significantly blocked spermatogonial differentiation. Inhibition of glucose conversion to glucose-6-phosphate or pentose phosphate pathway also repressed the formation of c-Kit differentiating germ cells, suggesting that metabolites produced from glycolysis are required for spermatogonial differentiation. We further demonstrated that the expression levels of several metabolic regulators and enzymes were significantly altered upon RA-induced differentiation, with both RNA-seq and quantitative proteomic analyses. Taken together, our data unveil a critically regulated bioenergetic balance between glycolysis and mitochondrial respiration that is required for spermatogonial proliferation and differentiation. 10.1038/s41421-020-0183-x
The role of glucose, pyruvate and lactate in ATP production by rat spermatocytes and spermatids. Grootegoed J A,Jansen R,Van der Molen H J Biochimica et biophysica acta The ATP content of pachytene spermatocytes and round spermatids, isolated from rat testes, was not maintained during incubation of the germ cells in the presence of glucose. Glucose was metabolized via glycolysis at a considerable rate, but the rate of oxidation of the resulting endogenous pyruvate in the mitochondria was too low to support fully ATP production. Exogenous pyruvate (0.25 mM) or exogenous L-lactate (3-6 mM), however, were effective energy substrates. The lactate dehydrogenase reaction in isolated germ cells favoured the rapid conversion of pyruvate to lactate, at the expense of reducing equivalents from mitochondrial NADH. Hence, to support ATP production by the germ cells via mitochondrial metabolism of endogenous pyruvate, a relatively high concentration of exogenous lactate may be essential. In the spermatogenic microenvironment in vivo, such high concentrations of lactate could result from the net production of lactate by Sertoli cells. The mitochondria of the isolated germ cells produced ATP probably at a close to maximal rate, and spermatogenesis therefore may be extremely sensitive to compounds which interfere with mitochondrial energy metabolism and respiratory control. 10.1016/0005-2728(84)90194-4
Microphotometric study on cytochrome oxidase and lactate dehydrogenase activities in mouse spermatozoa during maturation and in vivo and in vitro capacitation. Ferrandi B,Cremonesi F,Consiglio A L,Porcelli F Acta histochemica In Eutherian (mammalian) spermatozoa, maturation and capacitation are associated to modifications of the metabolic activities. In order to demonstrate such variations, a quantitative cytochemical study was carried out on cytochrome oxidase and L-lactate dehydrogenase activities in mouse spermatozoa collected from the male and female genital tracts and at different times of the in vitro capacitation. Microdensitometric measurements were made on a Vickers M85 integrator microdensitometer at lambda = 480 +/- 5 nm and lambda = 585 +/- 5 nm wavelengths for the cytochrome oxidase and LDH activities, respectively. The cytochrome oxidase activity first decreases and then increases significantly both during maturation and during capacitation in vivo and in vitro. The LDH activity decreases significantly and gradually in the male and female genital tracts as well as in the course of in vitro capacitation where, however, an enhancement in the anaerobic glycolysis occurs. 10.1016/S0065-1281(89)80088-1
Phosphoglycerate kinase 2 (PGK2) is essential for sperm function and male fertility in mice. Biology of reproduction Phosphoglycerate kinase 2 (PGK2), an isozyme that catalyzes the first ATP-generating step in the glycolytic pathway, is encoded by an autosomal retrogene that is expressed only during spermatogenesis. It replaces the ubiquitously expressed phosphoglycerate kinase 1 (PGK1) isozyme following repression of Pgk1 transcription by meiotic sex chromosome inactivation during meiotic prophase and by postmeiotic sex chromatin during spermiogenesis. The targeted disruption of Pgk2 by homologous recombination eliminates PGK activity in sperm and severely impairs male fertility, but does not block spermatogenesis. Mating behavior, reproductive organ weights (testis, excurrent ducts, and seminal vesicles), testis histology, sperm counts, and sperm ultrastructure were indistinguishable between Pgk2(-/-) and wild-type mice. However, sperm motility and ATP levels were markedly reduced in males lacking PGK2. These defects in sperm function were slightly less severe than observed in males lacking glyceraldehyde-3-phosphate dehydrogenase, spermatogenic (GAPDHS), the isozyme that catalyzes the step preceding PGK2 in the sperm glycolytic pathway. Unlike Gapdhs(-/-) males, the Pgk2(-/-) males also sired occasional pups. Alternative pathways that bypass the PGK step of glycolysis exist. We determined that one of these bypass enzymes, acylphosphatase, is active in mouse sperm, perhaps contributing to phenotypic differences between mice lacking GAPDHS or PGK2. This study determined that PGK2 is not required for the completion of spermatogenesis, but is essential for sperm motility and male fertility. In addition to confirming the importance of the glycolytic pathway for sperm function, distinctive phenotypic characteristics of Pgk2(-/-) mice may provide further insights into the regulation of sperm metabolism. 10.1095/biolreprod.109.079699
Effects of quercetin on rat testis aerobic glycolysis. Trejo R,Valadéz-Salazar A,Delhumeau G Canadian journal of physiology and pharmacology Lactate production by testicular fragments and isolated germinal cells at various stages of spermatogenesis was studied in aerobic and anerobic conditions. Several ATPase inhibitors were used to determine the role of ATPase activities in the control of aerobic lactate production. Aerobic glycolysis reached a high level in spermatogonia plus Sertoli cell and in primary spermatocyte populations. The activity was twice that found in early spermatids. Neither Na+-K+ ATPase nor mitochondrial F1 ATPase seemed to participate directly in the control of aerobic glycolysis. The uncoupling of oxidative phosphorylation revealed the potential role of F1 ATPase in providing ADP and P(i) for the glycolytic pathway. Lactate production was inhibited by quercetin in all the experimental conditions tested. Quercetin (100 microM) halted lactate production by the Sertoli cell plus spermatogonia population and by isolated primary spermatocytes. In spermatids, quercetin inhibited aerobic glycolysis only by 40%, even at higher concentrations. Only during the first meiotic prophase did quercetin inhibit the activity of a cytosolic Ca(2+)-Mg2+ ATPase. This ATPase was also inhibited by erythro-9-[3-3(hydroxynonyl)]adenine (EHNA), suggesting that a cytoplasmic dynein could be involved in the control of glycolysis in Sertoli cells, spermatogonia, and early primary spermatocytes. 10.1139/y95-722
The Warburg effect revisited--lesson from the Sertoli cell. Oliveira Pedro F,Martins Ana D,Moreira Ana C,Cheng C Yan,Alves Marco G Medicinal research reviews Otto Warburg observed that cancerous cells prefer fermentative instead of oxidative metabolism of glucose, although the former is in theory less efficient. Since Warburg's pioneering works, special attention has been given to this difference in cell metabolism. The Warburg effect has been implicated in cell transformation, immortalization, and proliferation during tumorigenesis. Cancer cells display enhanced glycolytic activity, which is correlated with high proliferation, and thus, glycolysis appears to be an excellent candidate to target cancer cells. Nevertheless, little attention has been given to noncancerous cells that exhibit a "Warburg-like" metabolism with slight, but perhaps crucial, alterations that may provide new directions to develop new and effective anticancer therapies. Within the testis, the somatic Sertoli cell (SC) presents several common metabolic features analogous to cancer cells, and a clear "Warburg-like" metabolism. Nevertheless, SCs actively proliferate only during a specific time period, ceasing to divide in most species after puberty, when they become terminally differentiated. The special metabolic features of SC, as well as progression from the immature but proliferative state, to the mature nonproliferative state, where a high glycolytic activity is maintained, make these cells unique and a good model to discuss new perspectives on the Warburg effect. Herein we provide new insight on how the somatic SC may be a source of new and exciting information concerning the Warburg effect and cell proliferation. 10.1002/med.21325
Lactate and energy metabolism in male germ cells. Boussouar Fayçal,Benahmed Mohamed Trends in endocrinology and metabolism: TEM Various alterations in germ cell proliferation/differentiation, survival and energy metabolism are potentially involved in hypospermatogenesis leading to male infertility. Several reviews have been devoted to the different processes whose alteration might underlie hypospermatogenesis, except for energy metabolism in the testis. Energy metabolism in the testis exhibits some specificity in that lactate is the central energy metabolite used by germ cells. This metabolite is produced by somatic Sertoli cells, transported and used by germ cells in the context of an active cooperation under the control of the endocrine system and local cytokines. In this review, we present and discuss relevant published data on energy metabolism in male germ cells with a specific emphasis on lactate. 10.1016/j.tem.2004.07.003
Metabolic changes during spermatogenesis and thoracic tissue maturation in Drosophila hydei. Geer B W,Martensen D V,Downing B C,Muzyka G S Developmental biology 10.1016/0012-1606(72)90022-x