logo logo
Replication of many human viruses is refractory to inhibition by endogenous cellular microRNAs. Bogerd Hal P,Skalsky Rebecca L,Kennedy Edward M,Furuse Yuki,Whisnant Adam W,Flores Omar,Schultz Kimberly L W,Putnam Nicole,Barrows Nicholas J,Sherry Barbara,Scholle Frank,Garcia-Blanco Mariano A,Griffin Diane E,Cullen Bryan R Journal of virology The issue of whether viruses are subject to restriction by endogenous microRNAs (miRNAs) and/or by virus-induced small interfering RNAs (siRNAs) in infected human somatic cells has been controversial. Here, we address this question in two ways. First, using deep sequencing, we demonstrate that infection of human cells by the RNA virus dengue virus (DENV) or West Nile virus (WNV) does not result in the production of any virus-derived siRNAs or viral miRNAs. Second, to more globally assess the potential of small regulatory RNAs to inhibit virus replication, we used gene editing to derive human cell lines that lack a functional Dicer enzyme and that therefore are unable to produce miRNAs or siRNAs. Infection of these cells with a wide range of viruses, including DENV, WNV, yellow fever virus, Sindbis virus, Venezuelan equine encephalitis virus, measles virus, influenza A virus, reovirus, vesicular stomatitis virus, human immunodeficiency virus type 1, or herpes simplex virus 1 (HSV-1), failed to reveal any enhancement in the replication of any of these viruses, although HSV-1, which encodes at least eight Dicer-dependent viral miRNAs, did replicate somewhat more slowly in the absence of Dicer. We conclude that most, and perhaps all, human viruses have evolved to be resistant to inhibition by endogenous human miRNAs during productive replication and that dependence on a cellular miRNA, as seen with hepatitis C virus, is rare. How viruses have evolved to avoid inhibition by endogenous cellular miRNAs, which are generally highly conserved during metazoan evolution, remains to be determined. Importance: Eukaryotic cells express a wide range of small regulatory RNAs, including miRNAs, that have the potential to inhibit the expression of mRNAs that show sequence complementarity. Indeed, previous work has suggested that endogenous miRNAs have the potential to inhibit viral gene expression and replication. Here, we demonstrate that the replication of a wide range of pathogenic viruses is not enhanced in human cells engineered to be unable to produce miRNAs, indicating that viruses have evolved to be resistant to inhibition by miRNAs. This result is important, as it implies that manipulation of miRNA levels is not likely to prove useful in inhibiting virus replication. It also focuses attention on the question of how viruses have evolved to resist inhibition by miRNAs and whether virus mutants that have lost this resistance might prove useful, for example, in the development of attenuated virus vaccines. 10.1128/JVI.00985-14
Viral miRNAs Alter Host Cell miRNA Profiles and Modulate Innate Immune Responses. Frontiers in immunology Prevalence of the members of herpesvirus family in oral inflammatory diseases is increasingly acknowledged suggesting their likely role as an etiological factor. However, the underlying mechanisms remain obscure. In our recent miRNA profiling of healthy and diseased human tooth pulps, elevated expression of human herpesvirus encoded viral microRNAs (v-miRs) were identified. Based on the fold induction and significance values, we selected three v-miRs namely miR-K12-3-3p [Kaposi sarcoma-associated virus (KSHV)], miR-H1 [herpes simplex virus 1 (HSV1)], and miR-UL-70-3p [human cytomegalovirus (HCMV)] to further examine their impact on host cellular functions. We examined their impact on cellular miRNA profiles of primary human oral keratinocytes (HOK). Our results show differential expression of several host miRNAs in v-miR-transfected HOK. High levels of v-miRs were detected in exosomes derived from v-miR transfected HOK as well as the KSHV-infected cell lines. We show that HOK-derived exosomes release their contents into macrophages (Mφ) and alter expression of endogenous miRNAs. Concurrent expression analysis of precursor (pre)-miRNA and mature miRNA suggest transcriptional or posttranscriptional impact of v-miRs on the cellular miRNAs. Employing bioinformatics, we predicted several pathways targeted by deregulated cellular miRNAs that include cytoskeletal organization, endocytosis, and cellular signaling. We validated three novel targets of miR-K12-3-3p and miR-H1 that are involved in endocytic and intracellular trafficking pathways. To evaluate the functional consequence of this regulation, we performed phagocytic uptake of labeled bacteria and noticed significant attenuation in miR-H1 and miR-K12-3-3p but not miR-UL70-3p transfected primary human Mφ. Multiple cytokine analysis of challenged Mφ revealed marked reduction of secreted cytokine levels with important roles in innate and adaptive immune responses suggesting a role of v-miRs in immune subversion. Our findings reveal that oral disease associated v-miRs can dysregulate functions of key host cells that shape oral mucosal immunity thus exacerbating disease severity and progression. 10.3389/fimmu.2018.00433
Varicella-Zoster Virus Expresses Multiple Small Noncoding RNAs. Markus Amos,Golani Linoy,Ojha Nishant Kumar,Borodiansky-Shteinberg Tatiana,Kinchington Paul R,Goldstein Ronald S Journal of virology Many herpesviruses express small noncoding RNAs (sncRNAs), including microRNAs (miRNAs), that may play roles in regulating lytic and latent infections. None have yet been reported in varicella-zoster virus (VZV; also known as human herpesvirus 3 [HHV-3]). Here we analyzed next-generation sequencing (NGS) data for small RNAs in VZV-infected fibroblasts and human embryonic stem cell-derived (hESC) neurons. Two independent bioinformatics analyses identified more than 20 VZV-encoded 20- to 24-nucleotide RNAs, some of which are predicted to have stem-loop precursors potentially representing miRNAs. These sequences are perfectly conserved between viruses from three clades of VZV. One NGS-identified sequence common to both bioinformatics analyses mapped to the repeat regions of the VZV genome, upstream of the predicted promoter of the immediate early gene open reading frame 63 (ORF63). This miRNA candidate was detected in each of 3 independent biological repetitions of NGS of RNA from fibroblasts and neurons productively infected with VZV using TaqMan quantitative PCR (qPCR). Importantly, transfected synthetic RNA oligonucleotides antagonistic to the miRNA candidate significantly enhanced VZV plaque growth rates. The presence of 6 additional small noncoding RNAs was also verified by TaqMan qPCR in productively infected fibroblasts and ARPE19 cells. Our results show VZV, like other human herpesviruses, encodes several sncRNAs and miRNAs, and some may regulate infection of host cells. Varicella-zoster virus is an important human pathogen, with herpes zoster being a major health issue in the aging and immunocompromised populations. Small noncoding RNAs (sncRNAs) are recognized as important actors in modulating gene expression, and this study demonstrates the first reported VZV-encoded sncRNAs. Many are clustered to a small genomic region, as seen in other human herpesviruses. At least one VZV sncRNA was expressed in productive infection of neurons and fibroblasts that is likely to reduce viral replication. Since sncRNAs have been suggested to be potential targets for antiviral therapies, identification of these molecules in VZV may provide a new direction for development of treatments for painful herpes zoster. 10.1128/JVI.01710-17
Virus-encoded microRNAs facilitate gammaherpesvirus latency and pathogenesis in vivo. Feldman Emily R,Kara Mehmet,Coleman Carrie B,Grau Katrina R,Oko Lauren M,Krueger Brian J,Renne Rolf,van Dyk Linda F,Tibbetts Scott A mBio UNLABELLED:Gammaherpesviruses, including Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV, or HHV-8), and murine gammaherpesvirus 68 (MHV68, γHV68, or MuHV-4), are B cell-tropic pathogens that each encode at least 12 microRNAs (miRNAs). It is predicted that these regulatory RNAs facilitate infection by suppressing host target genes involved in a wide range of key cellular pathways. However, the precise contribution that gammaherpesvirus miRNAs make to viral life cycle and pathogenesis in vivo is unknown. MHV68 infection of mice provides a highly useful system to dissect the function of specific viral elements in the context of both asymptomatic infection and disease. Here, we report (i) analysis of in vitro and in vivo MHV68 miRNA expression, (ii) generation of an MHV68 miRNA mutant with reduced expression of all 14 pre-miRNA stem-loops, and (iii) comprehensive phenotypic characterization of the miRNA mutant virus in vivo. The profile of MHV68 miRNAs detected in infected cell lines varied with cell type and did not fully recapitulate the profile from cells latently infected in vivo. The miRNA mutant virus, MHV68.Zt6, underwent normal lytic replication in vitro and in vivo, demonstrating that the MHV68 miRNAs are dispensable for acute replication. During chronic infection, MHV68.Zt6 was attenuated for latency establishment, including a specific defect in memory B cells. Finally, MHV68.Zt6 displayed a striking attenuation in the development of lethal pneumonia in mice deficient in IFN-γ. These data indicate that the MHV68 miRNAs may facilitate virus-driven maturation of infected B cells and implicate the miRNAs as a critical determinant of gammaherpesvirus-associated disease. IMPORTANCE:Gammaherpesviruses such as EBV and KSHV are widespread pathogens that establish lifelong infections and are associated with the development of numerous types of diseases, including cancer. Gammaherpesviruses encode many small noncoding RNAs called microRNAs (miRNAs). It is predicted that gammaherpesvirus miRNAs facilitate infection and disease by suppressing host target transcripts involved in a wide range of key cellular pathways; however, the precise contribution that these regulatory RNAs make to in vivo virus infection and pathogenesis is unknown. Here, we generated a mutated form of murine gammaherpesvirus (MHV68) to dissect the function of gammaherpesvirus miRNAs in vivo. We demonstrate that the MHV68 miRNAs were dispensable for short-term virus replication but were important for establishment of lifelong infection in the key virus reservoir of memory B cells. Moreover, the MHV68 miRNAs were essential for the development of virus-associated pneumonia, implicating them as a critical component of gammaherpesvirus-associated disease. 10.1128/mBio.00981-14
Ovine herpesvirus-2-encoded microRNAs target virus genes involved in virus latency. Riaz Aayesha,Dry Inga,Levy Claire S,Hopkins John,Grey Finn,Shaw Darren J,Dalziel Robert G The Journal of general virology Herpesviruses encode microRNAs (miRNAs) that target both virus and host genes; however, their role in herpesvirus biology is understood poorly. We identified previously eight miRNAs encoded by ovine herpesvirus-2 (OvHV-2), the causative agent of malignant catarrhal fever (MCF), and have now investigated the role of these miRNAs in regulating expression of OvHV-2 genes that play important roles in virus biology. ORF20 (cell cycle inhibition), ORF50 (reactivation) and ORF73 (latency maintenance) each contain predicted targets for several OvHV-2 miRNAs. Co-transfection of miRNA mimics with luciferase reporter constructs containing the predicted targets showed the 5' UTRs of ORF20 and ORF73 contain functional targets for ovhv-miR-2 and ovhv2-miR-8, respectively, and the 3' UTR of ORF50 contains a functional target for ovhv2-miR-5. Transfection of BJ1035 cells (an OvHV-2-infected bovine T-cell line) with the relevant miRNA mimic resulted in a significant decrease in ORF50 and a smaller but non-significant decrease in ORF20. However, we were unable to demonstrate a decrease in ORF73. MCF is a disease of dysregulated lymphocyte proliferation; miRNA inhibition of ORF20 expression may play a role in this aberrant lymphocyte proliferation. The proteins encoded by ORF50 and ORF73 play opposing roles in latency. It has been hypothesized that miRNA-induced inhibition of virus genes acts to ensure that fluctuations in virus mRNA levels do not result in reactivation under conditions that are unfavourable for viral replication and our data supported this hypothesis. 10.1099/vir.0.059303-0