logo logo
Runx2 induces acute myeloid leukemia in cooperation with Cbfbeta-SMMHC in mice. Blood The core-binding factor (CBF) is a master regulator of developmental and differentiation programs, and CBF alterations are frequently associated with acute leukemia. The role of the CBF member RUNX2 in hematopoiesis is poorly understood. Genetic evidence suggests that deregulation of Runx2 may cause myeloid leukemia in mice expressing the fusion oncogene Cbfb-MYH11. In this study, we show that sustained expression of Runx2 modulates Cbfbeta-smooth muscle myosin heavy chain (SMMHC)-mediated myeloid leukemia development. Expression of Runx2 is high in the hematopoietic stem cell compartment and decreases during myeloid differentiation. Sustained Runx2 expression hinders myeloid progenitor differentiation capacity and represses expression of CBF targets Csf1R, Mpo, Cebpd, the cell cycle inhibitor Cdkn1a, and myeloid markers Cebpa and Gfi1. In addition, full-length Runx2 cooperates with Cbfbeta-SMMHC in leukemia development in transplantation assays. Furthermore, we show that the nuclear matrix-targeting signal and DNA-binding runt-homology domain of Runx2 are essential for its leukemogenic activity. Conversely, Runx2 haplo-insufficiency delays the onset and reduces the incidence of acute myeloid leukemia. Together, these results indicate that Runx2 is expressed in the stem cell compartment, interferes with differentiation and represses CBF targets in the myeloid compartment, and modulates the leukemogenic function of Cbfbeta-SMMHC in mouse leukemia. 10.1182/blood-2008-06-162248
Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Yin John A Liu,O'Brien Michelle A,Hills Robert K,Daly Sarah B,Wheatley Keith,Burnett Alan K Blood The clinical value of serial minimal residual disease (MRD) monitoring in core binding factor (CBF) acute myeloid leukemia (AML) by quantitative RT-PCR was prospectively assessed in 278 patients [163 with t(8;21) and 115 with inv(16)] entered in the United Kingdom MRC AML 15 trial. CBF transcripts were normalized to 10(5) ABL copies. At remission, after course 1 induction chemotherapy, a > 3 log reduction in RUNX1-RUNX1T1 transcripts in BM in t(8;21) patients and a > 10 CBFB-MYH11 copy number in peripheral blood (PB) in inv(16) patients were the most useful prognostic variables for relapse risk on multivariate analysis. MRD levels after consolidation (course 3) were also informative. During follow-up, cut-off MRD thresholds in BM and PB associated with a 100% relapse rate were identified: for t(8;21) patients BM > 500 copies, PB > 100 copies; for inv(16) patients, BM > 50 copies and PB > 10 copies. Rising MRD levels on serial monitoring accurately predicted hematologic relapse. During follow-up, PB sampling was equally informative as BM for MRD detection. We conclude that MRD monitoring by quantitative RT-PCR at specific time points in CBF AML allows identification of patients at high risk of relapse and could now be incorporated in clinical trials to evaluate the role of risk directed/preemptive therapy. 10.1182/blood-2012-06-435669
Secondary genetic lesions in acute myeloid leukemia with inv(16) or t(16;16): a study of the German-Austrian AML Study Group (AMLSG). Paschka Peter,Du Juan,Schlenk Richard F,Gaidzik Verena I,Bullinger Lars,Corbacioglu Andrea,Späth Daniela,Kayser Sabine,Schlegelberger Brigitte,Krauter Jürgen,Ganser Arnold,Köhne Claus-Henning,Held Gerhard,von Lilienfeld-Toal Marie,Kirchen Heinz,Rummel Mathias,Götze Katharina,Horst Heinz-August,Ringhoffer Mark,Lübbert Michael,Wattad Mohammed,Salih Helmut R,Kündgen Andrea,Döhner Hartmut,Döhner Konstanze Blood In this study, we evaluated the impact of secondary genetic lesions in acute myeloid leukemia (AML) with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11. We studied 176 patients, all enrolled on prospective treatment trials, for secondary chromosomal aberrations and mutations in N-/KRAS, KIT, FLT3, and JAK2 (V617F) genes. Most frequent chromosomal aberrations were trisomy 22 (18%) and trisomy 8 (16%). Overall, 84% of patients harbored at least 1 gene mutation, with RAS being affected in 53% (45% NRAS; 13% KRAS) of the cases, followed by KIT (37%) and FLT3 (17%; FLT3-TKD [14%], FLT3-ITD [5%]). None of the secondary genetic lesions influenced achievement of complete remission. In multivariable analyses, KIT mutation (hazard ratio [HR] = 1.67; P = .04], log(10)(WBC) (HR = 1.33; P = .02), and trisomy 22 (HR = 0.54; P = .08) were relevant factors for relapse-free survival; for overall survival, FLT3 mutation (HR = 2.56; P = .006), trisomy 22 (HR = 0.45; P = .07), trisomy 8 (HR = 2.26; P = .02), age (difference of 10 years, HR = 1.46; P = .01), and therapy-related AML (HR = 2.13; P = .14) revealed as prognostic factors. The adverse effects of KIT and FLT3 mutations were mainly attributed to exon 8 and tyrosine kinase domain mutations, respectively. Our large study emphasizes the impact of both secondary chromosomal aberrations as well as gene mutations for outcome in AML with inv(16)/t (16;16). 10.1182/blood-2012-05-431486
Measurable residual disease-guided treatment with azacitidine to prevent haematological relapse in patients with myelodysplastic syndrome and acute myeloid leukaemia (RELAZA2): an open-label, multicentre, phase 2 trial. Platzbecker Uwe,Middeke Jan Moritz,Sockel Katja,Herbst Regina,Wolf Dominik,Baldus Claudia D,Oelschlägel Uta,Mütherig Anke,Fransecky Lars,Noppeney Richard,Bug Gesine,Götze Katharina S,Krämer Alwin,Bochtler Tilmann,Stelljes Matthias,Groth Christoph,Schubert Antje,Mende Marika,Stölzel Friedrich,Borkmann Christine,Kubasch Anne Sophie,von Bonin Malte,Serve Hubert,Hänel Mathias,Dührsen Ulrich,Schetelig Johannes,Röllig Christoph,Kramer Michael,Ehninger Gerhard,Bornhäuser Martin,Thiede Christian The Lancet. Oncology BACKGROUND:Monitoring of measurable residual disease (MRD) in patients with advanced myelodysplastic syndromes (MDS) or acute myeloid leukaemia (AML) who achieve a morphological complete remission can predict haematological relapse. In this prospective study, we aimed to determine whether MRD-guided pre-emptive treatment with azacitidine could prevent relapse in these patients. METHODS:The relapse prevention with azacitidine (RELAZA2) study is an open-label, multicentre, phase 2 trial done at nine university health centres in Germany. Patients aged 18 years or older with advanced MDS or AML, who had achieved a complete remission after conventional chemotherapy or allogeneic haemopoietic stem-cell transplantation, were prospectively screened for MRD during 24 months from baseline by either quantitative PCR for mutant NPM1, leukaemia-specific fusion genes (DEK-NUP214, RUNX1-RUNX1T1, CBFb-MYH11), or analysis of donor-chimaerism in flow cytometry-sorted CD34-positive cells in patients who received allogeneic haemopoietic stem-cell transplantation. MRD-positive patients in confirmed complete remission received azacitidine 75 mg/m per day subcutaneously on days 1-7 of a 29-day cycle for 24 cycles. After six cycles, MRD status was reassessed and patients with major responses (MRD negativity) were eligible for a treatment de-escalation. The primary endpoint was the proportion of patients who were relapse-free and alive 6 months after the start of pre-emptive treatment. Analyses were done per protocol. This trial is registered with ClincialTrials.gov, number NCT01462578, and finished recruitment on Aug 21, 2018. FINDINGS:Between Oct 10, 2011, and Aug 20, 2015, we screened 198 patients with advanced MDS (n=26) or AML (n=172), of whom 60 (30%) developed MRD during the 24-month screening period and 53 (88%) were eligible to start study treatment. 6 months after initiation of azacitidine, 31 (58%, 95% CI 44-72) of 53 patients were relapse-free and alive (p<0·0001; one-sided binomial test for null hypothesis p≤0·3). With a median follow-up of 13 months (IQR 8·5-22·8) after the start of MRD-guided treatment, relapse-free survival at 12 months was 46% (95% CI 32-59) in the 53 patients who were MRD-positive and received azacitidine. In MRD-negative patients, 12-month relapse-free survival was 88% (95% CI 82-94; hazard ratio 6·6 [95% CI 3·7-11·8], p<0·0001). The most common (grade 3-4) adverse event was neutropenia, occurring in 45 (85%) of 53 patients. One patient with neutropenia died because of an infection considered possibly related to study treatment. INTERPRETATION:Pre-emptive therapy with azacitidine can prevent or substantially delay haematological relapse in MRD-positive patients with MDS or AML who are at high risk of relapse. Our study also suggests that continuous MRD negativity during regular MRD monitoring might be prognostic for patient outcomes. FUNDING:Celgene Pharma, José Carreras Leukaemia Foundation, National Center for Tumor Diseases (NCT), and German Cancer Consortium (DKTK) Foundation. 10.1016/S1470-2045(18)30580-1
Prognostic impact of minimal residual disease in CBFB-MYH11-positive acute myeloid leukemia. Corbacioglu Andrea,Scholl Claudia,Schlenk Richard F,Eiwen Karina,Du Juan,Bullinger Lars,Fröhling Stefan,Reimer Peter,Rummel Mathias,Derigs Hans-Günter,Nachbaur David,Krauter Jürgen,Ganser Arnold,Döhner Hartmut,Döhner Konstanze Journal of clinical oncology : official journal of the American Society of Clinical Oncology PURPOSE:To evaluate the prognostic impact of minimal residual disease (MRD) in patients with acute myeloid leukemia (AML) expressing the CBFB-MYH11 fusion transcript. PATIENTS AND METHODS:Quantitative reverse transcriptase polymerase chain reaction (PCR) was performed on 684 bone marrow (BM; n = 331) and/or peripheral blood (PB; n = 353) samples (median, 13 samples per patient) from 53 younger adult (16 to 60 years old) patients with AML treated in prospective German-Austrian AML Study Group treatment trials. Samples were obtained at diagnosis (BM, n = 45; PB, n = 48), during treatment course (BM, n = 153; PB, n = 122), and at follow-up (BM, n = 133; PB, n = 183). To evaluate the applicability of PB for MRD detection, 198 paired BM and PB samples obtained at identical time points were analyzed. RESULTS:The following three clinically relevant checkpoints were identified during consolidation and early follow-up that predicted relapse: achievement of PCR negativity in at least one BM sample during consolidation therapy (2-year relapse-free survival [RFS], 79% v 54% for PCR positivity; P = .035); achievement of PCR negativity in at least two BM or PB samples during consolidation therapy and early follow-up (< or = 3 months; 2-year RFS, P = .001; overall survival, P = .01); and conversion from PCR negativity to PCR positivity with copy ratios of more than 10 after consolidation therapy. Analysis of paired BM and PB samples revealed BM samples to be more sensitive during the course of therapy, whereas for follow-up, PB samples were equally informative. CONCLUSION:We defined clinically relevant MRD checkpoints that allow for the identification of patients with CBFB-MYH11-positive AML who are at high risk of relapse. Monitoring of CBFB-MYH11 transcript levels should be incorporated into future clinical trials to guide therapeutic decisions. 10.1200/JCO.2010.28.6468
KIT with D816 mutations cooperates with CBFB-MYH11 for leukemogenesis in mice. Zhao Ling,Melenhorst Jan J,Alemu Lemlem,Kirby Martha,Anderson Stacie,Kench Maggie,Hoogstraten-Miller Shelley,Brinster Lauren,Kamikubo Yasuhiko,Gilliland D Gary,Liu P Paul Blood KIT mutations are the most common secondary mutations in inv(16) acute myeloid leukemia (AML) patients and are associated with poor prognosis. It is therefore important to verify that KIT mutations cooperate with CBFB-MYH11, the fusion gene generated by inv(16), for leukemogenesis. Here, we transduced wild-type and conditional Cbfb-MYH11 knockin (KI) mouse bone marrow (BM) cells with KIT D816V/Y mutations. KIT transduction caused massive BM Lin(-) cell death and fewer colonies in culture that were less severe in the KI cells. D816Y KIT but not wild-type KIT enhanced proliferation in Lin(-) cells and led to more mixed lineage colonies from transduced KI BM cells. Importantly, 60% and 80% of mice transplanted with KI BM cells expressing D816V or D816Y KIT, respectively, died from leukemia within 9 months, whereas no control mice died. Results from limiting dilution transplantations indicate higher frequencies of leukemia-initiating cells in the leukemia expressing mutated KIT. Signaling pathway analysis revealed that p44/42 MAPK and Stat3, but not AKT and Stat5, were strongly phosphorylated in the leukemia cells. Finally, leukemia cells carrying KIT D816 mutations were sensitive to the kinase inhibitor PKC412. Our data provide clear evidence for cooperation between mutated KIT and CBFB-MYH11 during leukemogenesis. 10.1182/blood-2011-02-338210