加载中

    RAGE and TLRs: relatives, friends or neighbours? Ibrahim Zaridatul Aini,Armour Carol L,Phipps Simon,Sukkar Maria B Molecular immunology The innate immune system forms the first line of protection against infectious and non-infectious tissue injury. Cells of the innate immune system detect pathogen-associated molecular patterns or endogenous molecules released as a result of tissue injury or inflammation through various innate immune receptors, collectively termed pattern-recognition receptors. Members of the Toll-like receptor (TLR) family of pattern-recognition receptors have well established roles in the host immune response to infection, while the receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor predominantly involved in the recognition of endogenous molecules released in the context of infection, physiological stress or chronic inflammation. RAGE and TLRs share common ligands and signaling pathways, and accumulating evidence points towards their co-operative interaction in the host immune response. At present however, little is known about the mechanisms that result in TLR versus RAGE signalling or RAGE-TLR cross-talk in response to their shared ligands. Here we review what is known in relation to the physicochemical basis of ligand interactions between TLRs and RAGE, focusing on three shared ligands of these receptors: HMGB1, S100A8/A9 and LPS. Our aim is to discuss what is known about differential ligand interactions with RAGE and TLRs and to highlight important areas for further investigation so that we may better understand the role of these receptors and their relationship in host defense. 10.1016/j.molimm.2013.07.008
    Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). van Beijnum Judy R,Buurman Wim A,Griffioen Arjan W Angiogenesis Sustained proinflammatory responses in rheumatoid arthritis, atherosclerosis, and diabetic retinopathy, as well as in cancer, are often associated with increased angiogenesis that contributes to tissue disruption and disease progression. High mobility group B1 (HMGB1) has been recognized as a proinflammatory cytokine and more recently, as a proangiogenic factor. HMGB1 can either be passively released from necrotic cells or actively secreted in response to angiogenic and inflammatory signals. HMGB1 itself may signal through the receptor for advanced glycation end products (RAGE), and via toll-like receptors, TLR2 and TLR4. Activation of these receptors results in the activation of NFkappaB, which induces the upregulation of leukocyte adhesion molecules and the production of proinflammatory cytokines and angiogenic factors in both hematopoietic and endothelial cells, thereby promoting inflammation. Interestingly, HMGB1 seems to be involved in a positive feedback mechanism, that may help to sustain inflammation and angiogenesis in several pathological conditions, thereby contributing to disease progression. Endothelial cells express HMGB1, as well as the receptors RAGE, TLR2, and TLR4, and in diverse pathologies HMGB1 and its receptors are overexpressed. Furthermore, HMGB1-induced signaling can activate NFkappaB, which can subsequently induce the expression of HMGB1 receptors. Thus, HMGB1 can mediate amplification of inflammation and angiogenesis through increased secretion of HMGB1 and increased expression of the receptors it can interact with. In this review, we discuss signaling cascades that HMGB1 can induce via TLRs and RAGE, as well as its contribution to pathologies involving endothelial cells. 10.1007/s10456-008-9093-5
    High-mobility group box 1 represents a potential marker of disease activity and novel therapeutic target in systemic lupus erythematosus. Urbonaviciute V,Voll R E Journal of internal medicine High-mobility group box 1 (HMGB1) protein is a nuclear DNA-binding protein, which functions as an alarmin when released from cells. Recent studies implicate extracellular HMGB1 in the pathogenesis of systemic lupus erythematosus (SLE), a prototypical autoimmune disease characterized by the formation of multiple autoantibodies, especially those directed against nucleosomes and double-stranded (ds)DNA. Elevated concentrations of HMGB1 are observed in sera as well as in skin lesions of patients with lupus. Of importance, serum HMGB1 and anti-HMGB1 autoantibody levels correlate with disease activity. In the blood of patients with SLE, HMGB1 is complexed with nucleosomes, at least partially. Moreover, HMGB1-nucleosome complexes from apoptotic cells activate antigen-presenting cells. Injection of HMGB1-nucleosome complexes into nonautoimmune mice results in the formation of autoantibodies against dsDNA and histones in a Toll-like receptor (TLR) 2-dependent manner. Additionally, HMGB1, as a part of DNA-anti-DNA immune complexes, can interact with receptor for advanced glycation end products (RAGE) on the surface of plasmacytoid dendritic cells and B cells leading to TLR9-dependent interferon (IFN)α release and activation of autoreactive B cells, respectively. HMGB1 attached to neutrophil extracellular traps may contribute to IFNα production by facilitating the recognition of self-nucleic acids. Furthermore, HMGB1, complexed with DNA and pathogenic anti-DNA autoantibodies, activates its receptors, TLR2, TLR4 and RAGE, and may thereby be involved in anti-DNA autoantibody-induced kidney damage in lupus nephritis. Collectively, these findings suggest that HMGB1 is a potential marker of disease activity and, because of its probable involvement in the pathogenesis, a novel therapeutic target in SLE. 10.1111/j.1365-2796.2011.02432.x
    An overview on HMGB1 inhibitors as potential therapeutic agents in HMGB1-related pathologies. Musumeci Domenica,Roviello Giovanni N,Montesarchio Daniela Pharmacology & therapeutics HMGB1 (High-Mobility Group Box-1) is a nuclear protein that acts as an architectural chromatin-binding factor involved in the maintenance of nucleosome structure and regulation of gene transcription. It can be released into the extracellular milieu from immune and non-immune cells in response to various stimuli. Extracellular HMGB1 contributes to the pathogenesis of numerous chronic inflammatory and autoimmune diseases, including sepsis, rheumatoid arthritis, atherosclerosis, chronic kidney disease, systemic lupus erythematosus (SLE), as well as cancer pathogenesis. Interaction of released HMGB1 with the cell-surface receptor for advanced glycation end products (RAGE) is one of the main signaling pathways triggering these diseases. It has been also demonstrated that the inhibition of the HMGB1-RAGE interaction represents a promising approach for the modulation of the inflammatory and tumor-facilitating activity of HMGB1. In this review we describe various approaches recently proposed in the literature to inhibit HMGB1 and the related inflammatory processes, especially focusing on the block of RAGE-HMGB1 signaling. Several strategies are based on molecules which mainly interact with RAGE as competitive antagonists of HMGB1. As an alternative, encouraging results have been obtained with HMGB1-targeting, leading to the identification of compounds that directly bind to HMGB1, ranging from small natural or synthetic molecules, such as glycyrrhizin and gabexate mesilate, to HMGB1-specific antibodies, peptides, proteins as well as bent DNA-based duplexes. Future perspectives are discussed in the light of the overall body of knowledge acquired by a large number of research groups operating in different but related fields. 10.1016/j.pharmthera.2013.11.001