Priming Microglia for Innate Immune Memory in the Brain. Neher Jonas J,Cunningham Colm Trends in immunology Microglia, the resident macrophages of the brain, are highly plastic and well known to be pre-activated or 'primed' by active inflammatory processes, resulting in amplified responses to a second inflammatory insult. Furthermore, the capacity of microglia to develop 'innate immune memory' (IIM), that is, long-lasting molecular reprogramming, has recently been demonstrated. Depending on the initial stimulus, IIM can either enhance or suppress microglial responses to a delayed, secondary insult. Moreover, both priming and IIM can affect pathological hallmarks of neurological disease in mouse models, which may be consistent with certain clinical observations in patients. Here, we discuss the remarkable capacity of microglia to process inflammatory signals over short and long timeframes and propose new integrated nomenclature for these processes. We also highlight future research avenues, with implications for human brain disease. 10.1016/j.it.2019.02.001
    Resident microglia rather than peripheral macrophages promote vascularization in brain tumors and are source of alternative pro-angiogenic factors. Brandenburg Susan,Müller Annett,Turkowski Kati,Radev Yordan T,Rot Sergej,Schmidt Christin,Bungert Alexander D,Acker Güliz,Schorr Anne,Hippe Andreas,Miller Kelly,Heppner Frank L,Homey Bernhard,Vajkoczy Peter Acta neuropathologica Myeloid cells are an essential part of the glioblastoma microenvironment. However, in brain tumors the function of these immune cells is not sufficiently clarified. In our study, we investigated differential pro-angiogenic activities of resident microglia and peripheral macrophages and their impact on glioma vascularization and progression. Our data demonstrate stable accumulation of microglia/macrophages during tumor growth. These cells often interact with tumor blood vessels correlating with vascular remodeling. Here, we identified resident microglia as well as peripheral macrophages as part of the perivascular niche, primarily contacting endothelial cells. We found overexpression of a variety of pro-angiogenic molecules within freshly isolated microglia/macrophages from glioma. CXCL2, until now a poorly described chemokine, was strongly up-regulated and showed better angiogenic activity than VEGF in vitro. Blocking the CXCL2-CXCR2 signaling pathway resulted in considerably diminished glioma sizes. Additionally, the importance of microglia/macrophages in tumor angiogenesis was confirmed by depletion of these cells in vivo. Vessel density decreased by 50% leading to significantly smaller tumor volumes. Remarkably, selective reduction of resident microglia affected tumoral vessel count comparable to ablation of the whole myeloid cell fraction. These results provide evidence that resident microglia are the crucial modulatory cell population playing a central role in regulation of vascular homeostasis and angiogenesis in brain tumors. Thus, resident microglia represent an alternative source of pro-angiogenic growth factors and cytokines. 10.1007/s00401-015-1529-6
    Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Maphis Nicole,Xu Guixiang,Kokiko-Cochran Olga N,Jiang Shanya,Cardona Astrid,Ransohoff Richard M,Lamb Bruce T,Bhaskar Kiran Brain : a journal of neurology Pathological aggregation of tau is a hallmark of Alzheimer's disease and related tauopathies. We have previously shown that the deficiency of the microglial fractalkine receptor (CX3CR1) led to the acceleration of tau pathology and memory impairment in an hTau mouse model of tauopathy. Here, we show that microglia drive tau pathology in a cell-autonomous manner. First, tau hyperphosphorylation and aggregation occur as early as 2 months of age in hTauCx3cr1(-/-) mice. Second, CD45(+) microglial activation correlates with the spatial memory deficit and spread of tau pathology in the anatomically connected regions of the hippocampus. Third, adoptive transfer of purified microglia derived from hTauCx3cr1(-/-) mice induces tau hyperphosphorylation within the brains of non-transgenic recipient mice. Finally, inclusion of interleukin 1 receptor antagonist (Kineret®) in the adoptive transfer inoculum significantly reduces microglia-induced tau pathology. Together, our results suggest that reactive microglia are sufficient to drive tau pathology and correlate with the spread of pathological tau in the brain. 10.1093/brain/awv081
    Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Haruwaka Koichiro,Ikegami Ako,Tachibana Yoshihisa,Ohno Nobuhiko,Konishi Hiroyuki,Hashimoto Akari,Matsumoto Mami,Kato Daisuke,Ono Riho,Kiyama Hiroshi,Moorhouse Andrew J,Nabekura Junichi,Wake Hiroaki Nature communications Microglia survey brain parenchyma, responding to injury and infections. Microglia also respond to systemic disease, but the role of blood-brain barrier (BBB) integrity in this process remains unclear. Using simultaneous in vivo imaging, we demonstrated that systemic inflammation induces CCR5-dependent migration of brain resident microglia to the cerebral vasculature. Vessel-associated microglia initially maintain BBB integrity via expression of the tight-junction protein Claudin-5 and make physical contact with endothelial cells. During sustained inflammation, microglia phagocytose astrocytic end-feet and impair BBB function. Our results show microglia play a dual role in maintaining BBB integrity with implications for elucidating how systemic immune-activation impacts neural functions. 10.1038/s41467-019-13812-z
    Brain microglia in psychiatric disorders. Mondelli Valeria,Vernon Anthony C,Turkheimer Federico,Dazzan Paola,Pariante Carmine M The lancet. Psychiatry The role of immune activation in psychiatric disorders has attracted considerable attention over the past two decades, contributing to the rise of a new era for psychiatry. Microglia, the macrophages of the brain, are progressively becoming the main focus of the research in this field. In this Review, we assess the literature on microglia activation across different psychiatric disorders, including post-mortem and in-vivo studies in humans and experimental studies in animals. Although microglia activation has been noted in all types of psychiatric disorder, no association was seen with specific diagnostic categories. Furthermore, the findings from these studies highlight that not all psychiatric patients have microglial activation. Therefore, the cause of the neuroinflammation in these cohorts and its implications are unclear. We discuss psychosocial stress as one of the main factors determining microglial activation in patients with psychiatric disorders, and explore the relevance of these findings for future treatment strategies. 10.1016/S2215-0366(17)30101-3
    Distinguishing features of microglia- and monocyte-derived macrophages after stroke. Kronenberg Golo,Uhlemann Ria,Richter Nadine,Klempin Friederike,Wegner Stephanie,Staerck Lilian,Wolf Susanne,Uckert Wolfgang,Kettenmann Helmut,Endres Matthias,Gertz Karen Acta neuropathologica After stroke, macrophages in the ischemic brain may be derived from either resident microglia or infiltrating monocytes. Using bone marrow (BM)-chimerism and dual-reporter transgenic fate mapping, we here set out to delimit the responses of either cell type to mild brain ischemia in a mouse model of 30 min transient middle cerebral artery occlusion (MCAo). A discriminatory analysis of gene expression at 7 days post-event yielded 472 transcripts predominantly or exclusively expressed in blood-derived macrophages as well as 970 transcripts for microglia. The differentially regulated genes were further collated with oligodendrocyte, astrocyte, and neuron transcriptomes, resulting in a dataset of microglia- and monocyte-specific genes in the ischemic brain. Functional categories significantly enriched in monocytes included migration, proliferation, and calcium signaling, indicative of strong activation. Whole-cell patch-clamp analysis further confirmed this highly activated state by demonstrating delayed outward K currents selectively in invading cells. Although both cell types displayed a mixture of known phenotypes pointing to the significance of 'intermediate states' in vivo, blood-derived macrophages were generally more skewed toward an M2 neuroprotective phenotype. Finally, we found that decreased engraftment of blood-borne cells in the ischemic brain of chimeras reconstituted with BM from Selplg mice resulted in increased lesions at 7 days and worse post-stroke sensorimotor performance. In aggregate, our study establishes crucial differences in activation state between resident microglia and invading macrophages after stroke and identifies unique genomic signatures for either cell type. 10.1007/s00401-017-1795-6
    Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. Hammond Timothy R,Dufort Connor,Dissing-Olesen Lasse,Giera Stefanie,Young Adam,Wysoker Alec,Walker Alec J,Gergits Frederick,Segel Michael,Nemesh James,Marsh Samuel E,Saunders Arpiar,Macosko Evan,Ginhoux Florent,Chen Jinmiao,Franklin Robin J M,Piao Xianhua,McCarroll Steven A,Stevens Beth Immunity Microglia, the resident immune cells of the brain, rapidly change states in response to their environment, but we lack molecular and functional signatures of different microglial populations. Here, we analyzed the RNA expression patterns of more than 76,000 individual microglia in mice during development, in old age, and after brain injury. Our analysis uncovered at least nine transcriptionally distinct microglial states, which expressed unique sets of genes and were localized in the brain using specific markers. The greatest microglial heterogeneity was found at young ages; however, several states-including chemokine-enriched inflammatory microglia-persisted throughout the lifespan or increased in the aged brain. Multiple reactive microglial subtypes were also found following demyelinating injury in mice, at least one of which was also found in human multiple sclerosis lesions. These distinct microglia signatures can be used to better understand microglia function and to identify and manipulate specific subpopulations in health and disease. 10.1016/j.immuni.2018.11.004
    Microglia-blood vessel interactions: a double-edged sword in brain pathologies. Dudvarski Stankovic Nevenka,Teodorczyk Marcin,Ploen Robert,Zipp Frauke,Schmidt Mirko H H Acta neuropathologica Microglia are long-living resident immune cells of the brain, which secure a stable chemical and physical microenvironment necessary for the proper functioning of the central nervous system (CNS). These highly dynamic cells continuously scan their environment for pathogens and possess the ability to react to damage-induced signals in order to protect the brain. Microglia, together with endothelial cells (ECs), pericytes and astrocytes, form the functional blood-brain barrier (BBB), a specialized endothelial structure that selectively separates the sensitive brain parenchyma from blood circulation. Microglia are in bidirectional and permanent communication with ECs and their perivascular localization enables them to survey the influx of blood-borne components into the CNS. Furthermore, they may stimulate the opening of the BBB, extravasation of leukocytes and angiogenesis. However, microglia functioning requires tight control as their dysregulation is implicated in the initiation and progression of numerous neurological diseases. Disruption of the BBB, changes in blood flow, introduction of pathogens in the sensitive CNS niche, insufficient nutrient supply, and abnormal secretion of cytokines or expression of endothelial receptors are reported to prime and attract microglia. Such reactive microglia have been reported to even escalate the damage of the brain parenchyma as is the case in ischemic injuries, brain tumors, multiple sclerosis, Alzheimer's and Parkinson's disease. In this review, we present the current state of the art of the causes and mechanisms of pathological interactions between microglia and blood vessels and explore the possibilities of targeting those dysfunctional interactions for the development of future therapeutics. 10.1007/s00401-015-1524-y