加载中

    Cognitive decline after sepsis. Annane Djillali,Sharshar Tarek The Lancet. Respiratory medicine The modern era of sepsis management is characterised by a growing number of patients who survive in the short term and are discharged from hospital. Increasing evidence suggests that these survivors exhibit long-term neurological sequelae, particularly substantial declines in cognitive function. The exact prevalence and outcomes of these neuropsychological sequelae are unclear. The mechanisms by which sepsis induces cognitive dysfunction probably include vascular injuries and neuroinflammation that are mediated by systemic metabolism disorders and overwhelming inflammation, a disrupted blood-brain barrier, oxidative stress, and severe microglial activation, particularly within the limbic system. Interventions targeting the blood-brain barrier, glial activation, and oxidative stress have shown promise in prevention of cognitive dysfunction in various experimental models of sepsis. The next step should be to translate these favourable effects into positive clinical results. 10.1016/S2213-2600(14)70246-2
    Focus on the brain and systemic organ systems: when essential interactions become toxic relationships. Smith M,Meyfroidt G Intensive care medicine 10.1007/s00134-018-5439-7
    P2RX7 sensitizes Mac-1/ICAM-1-dependent leukocyte-endothelial adhesion and promotes neurovascular injury during septic encephalopathy. Wang Huan,Hong Ling-Juan,Huang Ji-Yun,Jiang Quan,Tao Rong-Rong,Tan Chao,Lu Nan-Nan,Wang Cheng-Kun,Ahmed Muhammad M,Lu Ying-Mei,Liu Zhi-Rong,Shi Wei-Xing,Lai En-Yin,Wilcox Christopher S,Han Feng Cell research Septic encephalopathy (SE) is a critical factor determining sepsis mortality. Vascular inflammation is known to be involved in SE, but the molecular events that lead to the development of encephalopathy remain unclear. Using time-lapse in vivo two-photon laser scanning microscopy, we provide the first direct evidence that cecal ligation and puncture in septic mice induces microglial trafficking to sites adjacent to leukocyte adhesion on inflamed cerebral microvessels. Our data further demonstrate that septic injury increased the chemokine CXCL1 level in brain endothelial cells by activating endothelial P2RX7 and eventually enhanced the binding of Mac-1 (CD11b/CD18)-expressing leukocytes to endothelial ICAM-1. In turn, leukocyte adhesion upregulated endothelial CX3CL1, thereby triggering microglia trafficking to the injured site. The sepsis-induced increase in endothelial CX3CL1 was abolished in CD18 hypomorphic mutant mice. Inhibition of the P2RX7 pathway not only decreased endothelial ICAM-1 expression and leukocyte adhesion but also prevented microglia overactivation, reduced brain injury, and consequently doubled the early survival of septic mice. These results demonstrate the role of the P2RX7 pathway in linking neurovascular inflammation to brain damage in vivo and provide a rationale for targeting endothelial P2RX7 for neurovascular protection during SE. 10.1038/cr.2015.61
    Melatonin alleviates brain injury in mice subjected to cecal ligation and puncture via attenuating inflammation, apoptosis, and oxidative stress: the role of SIRT1 signaling. Zhao Lei,An Rui,Yang Yang,Yang Xiangmin,Liu Haixiao,Yue Liang,Li Xia,Lin Yan,Reiter Russel J,Qu Yan Journal of pineal research Sepsis is a systemic inflammatory response to infection that causes severe neurological complications. Previous studies have suggested that melatonin is protective during sepsis. Additionally, silent information regulator 1 (SIRT1) was reported to be beneficial in sepsis. However, the role of SIRT1 signaling in the protective effect of melatonin against septic encephalopathy remains unclear. This study aimed to investigate the role of SIRT1 in the protective effect of melatonin. EX527, a SIRT1 inhibitor, was used to reveal the role of SIRT1 in melatonin's action. Cecal ligation and puncture or sham operation was performed in male C57BL/6J mice. Melatonin was administrated intraperitoneally (30 mg/kg). The survival rate of mice was recorded for the 7-day period following the sham or CLP operation. The blood-brain barrier (BBB) integrity, brain water content, levels of inflammatory cytokines (TNF-α, IL-1β, and HMGB1), and the level of oxidative stress (superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA)) and apoptosis were assessed. The expression of SIRT1, Ac-FoxO1, Ac-p53, Ac-NF-κB, Bcl-2, and Bax was detected by Western blot. The results suggested that melatonin improved survival rate, attenuated brain edema and neuronal apoptosis, and preserved BBB integrity. Melatonin decreased the production of TNF-α, IL-1β, and HMGB1. Melatonin increased the activity of SOD and CAT and decreased the MDA production. Additionally, melatonin upregulated the expression of SIRT1 and Bcl-2 and downregulated the expression of Ac-FoxO1, Ac-p53, Ac-NF-κB, and Bax. However, the protective effects of melatonin were abolished by EX527. In conclusion, our results demonstrate that melatonin attenuates sepsis-induced brain injury via SIRT1 signaling activation. 10.1111/jpi.12254