加载中

    Schwann-Cell Autophagy, Functional Recovery, and Scar Reduction After Peripheral Nerve Repair. Ko Po-Yen,Yang Cheng-Chang,Kuo Yao-Lung,Su Fong-Chin,Hsu Tai-I,Tu Yuan-Kun,Jou I-Ming Journal of molecular neuroscience : MN The functional outcome after peripheral nerve repair is often unpredictable for many reasons, e.g., the severity of neuronal death and scarring. Axonal degeneration significantly affects outcomes. Post-injury axonal degeneration in peripheral nerves is accompanied by myelin degradation initiated by Schwann cells (SCs), which activate autophagy, a ubiquitous cytoprotective process essential for degrading and recycling cellular constituents. Scar formation occurs concomitantly with nerve insult and axonal degeneration. The association between SC autophagy and the mechanisms of nerve scar formation is still unknown. A rat model of peripheral nerve lesions induced by sciatic nerve transection injuries was used to examine the function of autophagy in fibrosis reduction during the early phase of nerve repair. Rats were treated with rapamycin (autophagy inducer) or 3-methyladenine (autophagy inhibitor). One week after the nerve damage, fibrosis was potently inhibited in rapamycin-treated rats and, based on gait analysis, yielded a better functional outcome. Immunohistochemistry showed that the autophagic activity of SCs and the accumulation of neurofilaments were upregulated in rapamycin-treated rats. A deficiency of SC autophagic activity might be an early event in nerve scar formation, and modulating autophagy might be a powerful pharmacological approach for improving functional outcomes. 10.1007/s12031-018-1056-8
    Curcumin accelerates the repair of sciatic nerve injury in rats through reducing Schwann cells apoptosis and promoting myelinization. Zhao Zhiwei,Li Xiaoling,Li Qing Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie BACKGROUND:Schwann cells (SCs) play an indispensable role in the repair and regeneration of injured peripheral nerve. Curcumin can reduce SCs apoptosis, and promote the regeneration and functional recovery of injured peripheral nerves. However, the corresponding mechanisms are not clear. OBJECTIVE:The article was aimed to explore the effect and corresponding mechanisms of curcumin on the repair of sciatic nerve injury in rats. METHODS:After surgery induced sciatic nerve injury, the model rats were divided into three groups and treated with curcumin, curcumin+PD98059 and curcumin+IGF-1 respectively for 4days. The phosphorylation of Erk1/2 and Akt, and the expression of LC3-II, Beclin 1 and p62 were measured using western blotting. After treatment for 60days, myelination of the injured sciatic nerve was evaluated by MBP immunohistochemical staining and the expression of PMP22, Fibrin and S100 were determined using qRT-PCR and western blotting. In vitro, RSC96 cells were starved for 12h to induce autophagy, and received DMSO, curcumin, PD98059+curcumin, IGF-1+curcumin and BFA1 respectively. The phosphorylation of Erk1/2、Akt and the expression of LC3-II, Beclin 1, p62, PMP22, Fibrin and S100 were measured using western blotting, and the cell apoptosis was detected by flow cytometry. RESULTS:Curcumin could promote injury-induced cell autophagy, remyelination and axon regeneration in sciatic nerve of rats. In vitro, curcumin could accelerate cell autophagy through regulating autophagy related Erk1/2 and Akt pathway, prevent cell apoptosis and promote expression of PMP22 and S100, and reduced deposition of Fibrin in cultured RSC96 SCs. CONCLUSIONS:Curcumin could accelerate injured sciatic nerve repair in rats through reducing SCs apoptosis and promoting myelinization. 10.1016/j.biopha.2017.05.099