加载中

    Bisphenol A inhibits follicle growth and induces atresia in cultured mouse antral follicles independently of the genomic estrogenic pathway. Peretz Jackye,Craig Zelieann R,Flaws Jodi A Biology of reproduction Bisphenol A (BPA) is an estrogenic chemical used to manufacture many commonly used plastic and epoxy resin-based products. BPA ubiquitously binds to estrogen receptors throughout the body, including estrogen receptor alpha (ESR1) in the ovary. Few studies have investigated the effects of BPA on ovarian antral follicles. Thus, we tested the hypothesis that BPA alters cell cycle regulators and induces atresia in antral follicles via the genomic estrogenic pathway, inhibiting follicle growth. To test this hypothesis, we isolated antral follicles from 32- to 35-day-old control and Esr1-overexpressing mice and cultured them with vehicle control (dimethylsulfoxide [DMSO]) or BPA (1-100 μg/ml). Additionally, antral follicles were isolated from 32- to 35-day-old FVB mice and cultured with DMSO, BPA (1-100 μg/ml), estradiol (10 nM), ICI 182,780 (ICI; 1 μM), BPA plus ICI, or BPA plus estradiol. Follicles were measured for growth every 24 h for 96-120 h and processed either for analysis of estrogen receptor, cell cycle, and/or atresia factor mRNA expression, or for histological evaluation of atresia. Results indicate that estradiol and ICI do not protect follicles from BPA-induced growth inhibition and that estradiol does not protect follicles from BPA-induced atresia. Furthermore, overexpressing Esr1 does not increase susceptibility of follicles to BPA-induced growth inhibition. Additionally, BPA up-regulates Cdk4, Ccne1, and Trp53 expression, whereas it down-regulates Ccnd2 expression. BPA also up-regulates Bax and Bcl2 expression while inducing atresia in antral follicles. These data indicate that BPA abnormally regulates cell cycle and atresia factors, and this may lead to atresia and inhibited follicle growth independently of the genomic estrogenic pathway. 10.1095/biolreprod.112.101899
    Bisphenol A exposure modifies methylation of imprinted genes in mouse oocytes via the estrogen receptor signaling pathway. Chao Hu-He,Zhang Xi-Feng,Chen Bo,Pan Bo,Zhang Lian-Jun,Li Lan,Sun Xiao-Feng,Shi Qing-Hua,Shen Wei Histochemistry and cell biology Bisphenol A (BPA), a synthetic additive used to harden polycarbonate plastics and epoxy resin, is ubiquitous in our everyday environment. Many studies have indicated detrimental effects of BPA on the mammalian reproductive abilities. This study is aimed to test the potential effects of BPA on methylation of imprinted genes during oocyte growth and meiotic maturation in CD-1 mice. Our results demonstrated that BPA exposure resulted in hypomethylation of imprinted gene Igf2r and Peg3 during oocyte growth, and enhanced estrogen receptor (ER) expression at the levels of mRNA and protein. The relationship between ER expression and imprinted gene hypomethylation was substantiated using an ER inhibitor, ICI182780. In addition, BPA promoted the primordial to primary follicle transition, thereby speeding up the depletion of the primordial follicle pool, and suppressed the meiotic maturation of oocytes because of abnormal spindle assembling in meiosis I. In conclusion, neonatal exposure to BPA inhibits methylation of imprinted genes during oogenesis via the ER signaling pathway in CD-1 mice. 10.1007/s00418-011-0894-z
    Fetal exposure to bisphenol A affects the primordial follicle formation by inhibiting the meiotic progression of oocytes. Zhang Han-Qiong,Zhang Xi-Feng,Zhang Lian-Jun,Chao Hu-He,Pan Bo,Feng Yan-Min,Li Lan,Sun Xiao-Feng,Shen Wei Molecular biology reports Bisphenol A (BPA) is an estrogenic environmental toxin widely used for the production of plastics. Frequent human exposure to this chemical has been proposed to be a potential public health risk. The objective of this study was to assess the effects of BPA on germ cell cyst breakdown and primordial follicle formation. Pregnant mice were treated with BPA at doses of 0, 0.02, 0.04, 0.08 mg/kg body weight/day from 12.5 day postcoitum. BPA was delivered orally to pregnant female mice. A dose-response relationship was observed with increased BPA exposure level associated with more oocytes in germ cell cyst and less primordial follicle at postnatal day 3 (P < 0.01). Progression to meiosis prophase I of oocytes was delayed in the 0.08 mg/kg bw/day treated group (P < 0.01). Decreased mRNA expression of specific meiotic genes including Stra8, Dmc1, Rec8 and Scp3 were observed. In conclusion, BPA exposure can affect the formation of primordial follicle by inhibiting meiotic progression of oocytes. 10.1007/s11033-011-1372-3
    Bisphenol A alters early oogenesis and follicle formation in the fetal ovary of the rhesus monkey. Hunt Patricia A,Lawson Crystal,Gieske Mary,Murdoch Brenda,Smith Helen,Marre Alyssa,Hassold Terry,VandeVoort Catherine A Proceedings of the National Academy of Sciences of the United States of America Widespread use of the endocrine disrupting chemical bisphenol A (BPA) in consumer products has resulted in nearly continuous human exposure. In rodents, low-dose exposures have been reported to adversely affect two distinct stages of oogenesis in the developing ovary: the events of prophase at the onset of meiosis in the fetal ovary and the formation of follicles in the perinatal ovary. Because these effects could influence the reproductive longevity and success of the exposed individual, we conducted studies in the rhesus monkey to determine whether BPA induces similar disturbances in the developing primate ovary. The routes and levels of human exposure are unclear; hence, two different exposure protocols were used: single daily oral doses and continuous exposure via subdermal implant. Our analyses of second trimester fetuses exposed at the time of meiotic onset suggest that, as in mice, BPA induces subtle disturbances in the prophase events that set the stage for chromosome segregation at the first meiotic division. Our analyses of third-trimester fetuses exposed to single daily oral doses during the time of follicle formation revealed an increase in multioocyte follicles analogous to that reported in rodents. However, two unique phenotypes were evident in continuously exposed animals: persistent unenclosed oocytes in the medullary region and small, nongrowing oocytes in secondary and antral follicles. Because effects on both stages of oogenesis were elicited using doses that yield circulating levels of BPA analogous to those reported in humans, these findings raise concerns for human reproductive health. 10.1073/pnas.1207854109