logo logo
A low dose of bisphenol A stimulates estradiol production by regulating β-catenin-FOXL2-CYP19A1 pathway in human ovarian granulosa cells. Biochemical and biophysical research communications Bisphenol A (BPA) is a well-known endocrine-disrupting chemical that interferes with normal steroid hormone production in various species. However, the underlying mechanism of the effect of BPA on steroid production in the human ovary is not well understood. In the present study, we found that BPA, at very low concentrations (10 to 10 M), significantly increased the expression of FOXL2, a transcriptional factor essential for proper ovarian development and function, in a human ovarian granulosa cell-derived cell line (KGN). Furthermore, BPA enhanced CYP19A1 (aromatase) expression levels and estradiol (E2) production, but these effects were not observed in FOXL2 knockout (KO) cells. In addition, we found that BPA upregulates β-catenin (CTNNB1) and stimulates nuclear translocation of CTNNB1, leading to transcriptional activation of FOXL2 mRNA. Furthermore, BPA failed to induce CYP19A1 and E2 production in CTNNB1-silenced KGN cells. Thus, we reveal a comprehensive molecular signaling cascade encompassing BPA-CTNNB1-FOXL2-CYP19A1-E2 that contributes to the endocrine-disrupting activities of BPA in human ovarian granulosa cells. 10.1016/j.bbrc.2021.10.070
Metabolism and disposition of bisphenol A in female rats. Snyder R W,Maness S C,Gaido K W,Welsch F,Sumner S C,Fennell T R Toxicology and applied pharmacology Bisphenol A (BPA), which is used in the manufacture of polycarbonates, elicits weak estrogenic activity in in vitro and in vivo test systems. The objectives of this study were to compare the patterns of disposition of radioactivity in adult female F-344 and CD rats after oral administration of (14)C BPA (100 mg/kg), to isolate the glucuronide of BPA and to assess its estrogenic activity in vitro, and to evaluate the transfer of radioactivity to pups from lactating dams administered (14)C BPA. Over 6 days, F-344 rats excreted more radioactivity in urine than CD rats. The major metabolite in urine was identified as bisphenol A glucuronide (BPA gluc) by incubation with beta-glucuronidase and (1)H and (13)C NMR spectroscopy. In lactating CD rats administered (14)C BPA (100 mg/kg) by gavage, only a small fraction of the label was found in milk, with 0.95 +/- 0.66, 0.63 +/- 0.13, and 0.26 +/- 0.10 microg equiv/ml (mean +/- SD) from dams collected 1, 8, and 26 h after dosing, respectively. Radioactivity in pup carcasses indicated exposure in the range of microgram equivalents per kilogram; those values ranged from 44.3 +/- 24.4 for pups separated from their lactating dams at 2 h to 78.4 +/- 10.9 at 24 h. BPA gluc was the prominent metabolite in milk and plasma. In test systems for activation of in vitro estrogen receptors alpha and beta, BPA gluc did not show appreciable efficacy at concentrations up to 0.03 mM, indicating that metabolism via glucuronidation is a detoxication reaction. 10.1006/taap.2000.9051
In vitro and in vivo interactions of bisphenol A and its metabolite, bisphenol A glucuronide, with estrogen receptors alpha and beta. Matthews J B,Twomey K,Zacharewski T R Chemical research in toxicology The estrogenic activities of bisphenol A (BPA) and its major metabolite BPA glucuronide (BPA-G) were assessed in a number of in vitro and in vivo assays. BPA competed with [3H]-17beta-estradiol (E2) for binding to mouse uterine cytosol ER, a glutathione S-transferase (GST)-human ER D, E, and F domain fusion protein (GST-hERalphadef) and full-length recombinant hERbeta. The IC(50) values for E2 were similar for all three receptor preparations, whereas BPA competed more effectively for binding to hERbeta (0.96 microM) than to either mouse uterine cytosol ER (26 microM) or GST-hERalphadef (36 microM). In contrast, BPA-G did not competitively displace [3H]E2 from any of the ER preparations. In MCF-7 cells transiently transfected with Gal4-hERalphadef or Gal4-hERbetadef, BPA induced reporter gene activity with comparable EC(50) values (71 and 39 microM, respectively). No significant induction of reporter gene activity was seen for BPA-G. Cotreatment studies showed that concentrations of (10 microM) BPA and BPA-G did not antagonize E2-induced luciferase mediated through either Gal4-hERalphadef or Gal4-hERbetadef. In vivo, the uterotropic effect of gavage or subcutaneous (sc) administration of 0.002-800 mg of BPA/kg of body weight/day for three consecutive days was examined in immature rats. Dose-related estrogenic effects on the rat uterus were observed at oral doses of 200 and 800 mg/kg and at sc doses of 10, 100, and 800 mg/kg. These results demonstrate that BPA competes more effectively for binding to ERbeta, but induces ERalpha- and ERbeta-mediated gene expression with comparable efficacy. In contrast, BPA-G did not exhibit any in vitro estrogenic activity. In addition, there was a clear route dependency on the ability of BPA to induce estrogenic responses in vivo.
Chronic exposure of bisphenol A impairs carbohydrate and lipid metabolism by altering corresponding enzymatic and metabolic pathways. Haq Muhammad Ejaz Ul,Akash Muhammad Sajid Hamid,Rehman Kanwal,Mahmood Malik Hassan Environmental toxicology and pharmacology Bisphenol-A (BPA), a widespread endocrine-disrupting chemical, has been recognized as a risk factor for metabolic disorders. BPA is considered to be involved in the impairment of carbohydrate and lipid metabolism but the underlying mechanisms still need to be elucidated. Present study was aimed to investigate the impact of BPA exposure on enzymatic and metabolic pathways that are responsible to regulate the carbohydrate and lipid metabolism. Experimental rats were exposed to different doses of BPA (50, 500, 2500 and 5000 μg/kg/day orally) dissolved in 1.5% dimethyl sulfoxide for a period of 3 months. Serum level of key metabolic enzymes (α-amylase, α-glucosidase, hexokinase, glucose-6-phosphatase and HMG-CoA-reductase) was measured by ELISA method. BPA-exposure suppressed the mRNA expression of gene encoding insulin resulting in poor insulin production. While hexokinase, acetyl-CoA carboxylase and squalene epoxide were up-regulated upon BPA exposure that justified the increased lipid profile. Moreover, BPA exposure showed considerably decreased glucose uptake through insulin signaling via Akt/GLUT4 pathways. There was a significant (p < 0.001) reduction in tissue level of glucose transporters. BPA significantly (p < 0.001) decreased the serum levels of oxidative stress biomarkers (GSH, CAT, and SOD). Serum levels of leptin, TNF-α, and IL-6 were rapidly increased upon exposure to BPA (p < 0.001). It was clearly evident from this study that BPA disturbed the carbohydrate and lipid metabolism after chronic exposure. It also accelerated the inflammatory processes by increasing the oxidative stress which ultimately lead towards the insulin resistance and impaired carbohydrate and lipid metabolism. 10.1016/j.etap.2020.103387
Bisphenol A impairs reproductive fitness in zebrafish ovary: Potential involvement of oxidative/nitrosative stress, inflammatory and apoptotic mediators. Biswas Subhasri,Ghosh Soumyajyoti,Samanta Anwesha,Das Sriparna,Mukherjee Urmi,Maitra Sudipta Environmental pollution (Barking, Essex : 1987) Bisphenol A (BPA) is a highly pervasive chemical in consumer products with its ascribed endocrine-disrupting properties. Several studies have shown the cytotoxic, genotoxic, and carcinogenic property of BPA over a multitude of tissues. Although BPA exposure has earlier been implicated in female infertility, the underlying molecular mechanisms explaining the toxicity of BPA in the ovary remains less understood. In the present study, a plausible correlation between redox balance or inflammatory signaling and reproductive fitness upon BPA exposure has been examined in zebrafish (Danio rerio) ovary. Congruent with significant alteration of major antioxidant enzymes (SOD1, SOD2, catalase, GPx1α, GSTα1) at the transcript level, 30 d BPA exposure at environmentally relevant concentrations (1, 10 and 100 μg L) promotes ovarian ROS/RNS synthesis, lipid peroxidation but attenuates catalase activity indicating elevated stress response. BPA promotes a sharp increase in ovarian p38 MAPK, NF-κB phosphorylation (activation), inducible nitric oxide synthase (Nos2a), and pro-inflammatory cytokines (TNF-α and IL-1β) expression, the reliable markers for inflammatory response. Congruent to an increased number of atretic follicles, BPA-exposed zebrafish ovary reveals elevated Bax/Bcl2 ratio, activation of caspase-8, -3 and DNA breakdown suggesting heightened cell death. Importantly, significant alteration in nuclear estrogen receptor (ER) transcripts (esr1, esr2a, and esr2b) and proteins (ERα, ERβ), gonadotropin receptors, and markers associated with steroidogenesis and growth factor gene expression in BPA-exposed ovary correlates well with impaired ovarian functions and maturational response. Collectively, elevated oxidative/nitrosative stress-mediated inflammatory response and altered ER expression can influence ovarian health and reproductive fitness in organisms exposed to BPA environment. 10.1016/j.envpol.2020.115692
Bisphenol A inhibits follicle growth and induces atresia in cultured mouse antral follicles independently of the genomic estrogenic pathway. Peretz Jackye,Craig Zelieann R,Flaws Jodi A Biology of reproduction Bisphenol A (BPA) is an estrogenic chemical used to manufacture many commonly used plastic and epoxy resin-based products. BPA ubiquitously binds to estrogen receptors throughout the body, including estrogen receptor alpha (ESR1) in the ovary. Few studies have investigated the effects of BPA on ovarian antral follicles. Thus, we tested the hypothesis that BPA alters cell cycle regulators and induces atresia in antral follicles via the genomic estrogenic pathway, inhibiting follicle growth. To test this hypothesis, we isolated antral follicles from 32- to 35-day-old control and Esr1-overexpressing mice and cultured them with vehicle control (dimethylsulfoxide [DMSO]) or BPA (1-100 μg/ml). Additionally, antral follicles were isolated from 32- to 35-day-old FVB mice and cultured with DMSO, BPA (1-100 μg/ml), estradiol (10 nM), ICI 182,780 (ICI; 1 μM), BPA plus ICI, or BPA plus estradiol. Follicles were measured for growth every 24 h for 96-120 h and processed either for analysis of estrogen receptor, cell cycle, and/or atresia factor mRNA expression, or for histological evaluation of atresia. Results indicate that estradiol and ICI do not protect follicles from BPA-induced growth inhibition and that estradiol does not protect follicles from BPA-induced atresia. Furthermore, overexpressing Esr1 does not increase susceptibility of follicles to BPA-induced growth inhibition. Additionally, BPA up-regulates Cdk4, Ccne1, and Trp53 expression, whereas it down-regulates Ccnd2 expression. BPA also up-regulates Bax and Bcl2 expression while inducing atresia in antral follicles. These data indicate that BPA abnormally regulates cell cycle and atresia factors, and this may lead to atresia and inhibited follicle growth independently of the genomic estrogenic pathway. 10.1095/biolreprod.112.101899
Bisphenol A exposure modifies methylation of imprinted genes in mouse oocytes via the estrogen receptor signaling pathway. Chao Hu-He,Zhang Xi-Feng,Chen Bo,Pan Bo,Zhang Lian-Jun,Li Lan,Sun Xiao-Feng,Shi Qing-Hua,Shen Wei Histochemistry and cell biology Bisphenol A (BPA), a synthetic additive used to harden polycarbonate plastics and epoxy resin, is ubiquitous in our everyday environment. Many studies have indicated detrimental effects of BPA on the mammalian reproductive abilities. This study is aimed to test the potential effects of BPA on methylation of imprinted genes during oocyte growth and meiotic maturation in CD-1 mice. Our results demonstrated that BPA exposure resulted in hypomethylation of imprinted gene Igf2r and Peg3 during oocyte growth, and enhanced estrogen receptor (ER) expression at the levels of mRNA and protein. The relationship between ER expression and imprinted gene hypomethylation was substantiated using an ER inhibitor, ICI182780. In addition, BPA promoted the primordial to primary follicle transition, thereby speeding up the depletion of the primordial follicle pool, and suppressed the meiotic maturation of oocytes because of abnormal spindle assembling in meiosis I. In conclusion, neonatal exposure to BPA inhibits methylation of imprinted genes during oogenesis via the ER signaling pathway in CD-1 mice. 10.1007/s00418-011-0894-z
Fetal exposure to bisphenol A affects the primordial follicle formation by inhibiting the meiotic progression of oocytes. Zhang Han-Qiong,Zhang Xi-Feng,Zhang Lian-Jun,Chao Hu-He,Pan Bo,Feng Yan-Min,Li Lan,Sun Xiao-Feng,Shen Wei Molecular biology reports Bisphenol A (BPA) is an estrogenic environmental toxin widely used for the production of plastics. Frequent human exposure to this chemical has been proposed to be a potential public health risk. The objective of this study was to assess the effects of BPA on germ cell cyst breakdown and primordial follicle formation. Pregnant mice were treated with BPA at doses of 0, 0.02, 0.04, 0.08 mg/kg body weight/day from 12.5 day postcoitum. BPA was delivered orally to pregnant female mice. A dose-response relationship was observed with increased BPA exposure level associated with more oocytes in germ cell cyst and less primordial follicle at postnatal day 3 (P < 0.01). Progression to meiosis prophase I of oocytes was delayed in the 0.08 mg/kg bw/day treated group (P < 0.01). Decreased mRNA expression of specific meiotic genes including Stra8, Dmc1, Rec8 and Scp3 were observed. In conclusion, BPA exposure can affect the formation of primordial follicle by inhibiting meiotic progression of oocytes. 10.1007/s11033-011-1372-3
Bisphenol A alters early oogenesis and follicle formation in the fetal ovary of the rhesus monkey. Hunt Patricia A,Lawson Crystal,Gieske Mary,Murdoch Brenda,Smith Helen,Marre Alyssa,Hassold Terry,VandeVoort Catherine A Proceedings of the National Academy of Sciences of the United States of America Widespread use of the endocrine disrupting chemical bisphenol A (BPA) in consumer products has resulted in nearly continuous human exposure. In rodents, low-dose exposures have been reported to adversely affect two distinct stages of oogenesis in the developing ovary: the events of prophase at the onset of meiosis in the fetal ovary and the formation of follicles in the perinatal ovary. Because these effects could influence the reproductive longevity and success of the exposed individual, we conducted studies in the rhesus monkey to determine whether BPA induces similar disturbances in the developing primate ovary. The routes and levels of human exposure are unclear; hence, two different exposure protocols were used: single daily oral doses and continuous exposure via subdermal implant. Our analyses of second trimester fetuses exposed at the time of meiotic onset suggest that, as in mice, BPA induces subtle disturbances in the prophase events that set the stage for chromosome segregation at the first meiotic division. Our analyses of third-trimester fetuses exposed to single daily oral doses during the time of follicle formation revealed an increase in multioocyte follicles analogous to that reported in rodents. However, two unique phenotypes were evident in continuously exposed animals: persistent unenclosed oocytes in the medullary region and small, nongrowing oocytes in secondary and antral follicles. Because effects on both stages of oogenesis were elicited using doses that yield circulating levels of BPA analogous to those reported in humans, these findings raise concerns for human reproductive health. 10.1073/pnas.1207854109