logo logo
Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnology reports (Amsterdam, Netherlands) Plants have been used throughout the world for its medicinal powers since ancient time. The pharmacological properties of plants are based on their phytochemical components especially the secondary metabolites which are outstanding sources of value added bioactive compounds. Secondary metabolites have complex chemical composition and are produced in response to various forms of stress to perform different physiological tasks in plants. They are used in pharmaceutical industries, cosmetics, dietary supplements, fragrances, flavors, dyes, etc. Extended use of these metabolites in various industrial sectors has initiated a need to focus research on increasing the production by employing plant tissue culture (PTC) techniques and optimizing their large scale production using bioreactors. PTC techniques being independent of climatic and geographical conditions will provide an incessant, sustainable, economical and viable production of secondary metabolites. This review article intends to assess the advantages of using plant tissue culture, distribution of important secondary metabolites in plant families, strategies involved for optimal metabolite production and the industrial importance of selected secondary metabolites. 10.1016/j.btre.2020.e00450
Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Neelakandan Anjanasree K,Wang Kan Plant cell reports In vitro cell and tissue-based systems have tremendous potential in fundamental research and for commercial applications such as clonal propagation, genetic engineering and production of valuable metabolites. Since the invention of plant cell and tissue culture techniques more than half a century ago, scientists have been trying to understand the morphological, physiological, biochemical and molecular changes associated with tissue culture responses. Establishment of de novo developmental cell fate in vitro is governed by factors such as genetic make-up, stress and plant growth regulators. In vitro culture is believed to destabilize the genetic and epigenetic program of intact plant tissue and can lead to chromosomal and DNA sequence variations, methylation changes, transposon activation, and generation of somaclonal variants. In this review, we discuss the current status of understanding the genomic and epigenomic changes that take place under in vitro conditions. It is hoped that a precise and comprehensive knowledge of the molecular basis of these variations and acquisition of developmental cell fate would help to devise strategies to improve the totipotency and embryogenic capability in recalcitrant species and genotypes, and to address bottlenecks associated with clonal propagation. 10.1007/s00299-011-1202-z
Plant cell, tissue and organ culture: the most flexible foundations for plant metabolic engineering applications. Ogita Shinjiro Natural product communications Significant advances in plant cell, tissue and organ culture (PCTOC) have been made in the last five decades. PCTOC is now thought to be the underlying technique for understanding general or specific biological functions of the plant kingdom, and it is one of the most flexible foundations for morphological, physiological and molecular biological applications of plants. Furthermore, the recent advances in the field of information technology (IT) have enabled access to a large amount of information regarding all aspects of plant biology. For example, sequencing information is stored in mega repositories such as the National Center for Biotechnology Information (NCBI), which can be easily accessed by researchers worldwide. To date, the PCTOC and IT combination strategy for regulation of target plant metabolism and the utilization of bioactive plant metabolites for commercial purposes is essential. In this review, the advantages and the limitations of these methodologies, especially regarding the production of bioactive plant secondary metabolites and metabolic engineering in target plants are discussed mainly from the phenotypic view point.
In vitro plant tissue culture: means for production of biological active compounds. Planta MAIN CONCLUSION:Plant tissue culture as an important tool for the continuous production of active compounds including secondary metabolites and engineered molecules. Novel methods (gene editing, abiotic stress) can improve the technique. Humans have a long history of reliance on plants for a supply of food, shelter and, most importantly, medicine. Current-day pharmaceuticals are typically based on plant-derived metabolites, with new products being discovered constantly. Nevertheless, the consistent and uniform supply of plant pharmaceuticals has often been compromised. One alternative for the production of important plant active compounds is in vitro plant tissue culture, as it assures independence from geographical conditions by eliminating the need to rely on wild plants. Plant transformation also allows the further use of plants for the production of engineered compounds, such as vaccines and multiple pharmaceuticals. This review summarizes the important bioactive compounds currently produced by plant tissue culture and the fundamental methods and plants employed for their production. 10.1007/s00425-018-2910-1
An Introduction to Plant Tissue Culture: Advances and Perspectives. Loyola-Vargas Victor M,Ochoa-Alejo Neftalí Methods in molecular biology (Clifton, N.J.) Plant tissue culture techniques are the most frequently used biotechnological tools for basic and applied purposes ranging from investigation on plant developmental processes, functional gene studies, commercial plant micropropagation, generation of transgenic plants with specific industrial and agronomical traits, plant breeding and crop improvement, virus elimination from infected materials to render high-quality healthy plant material, preservation and conservation of germplasm of vegetative propagated plant crops, and rescue of threatened or endangered plant species. Additionally, plant cell and organ cultures are of interest for the production of secondary metabolites of industrial and pharmaceutical interest. New technologies, such as the genome editing ones combined with tissue culture and Agrobacterium tumefaciens infection, are currently promising alternatives for the highly specific genetic manipulation of interesting agronomical or industrial traits in crop plants. Application of omics (genomics, transcriptomics, and proteomics) to plant tissue culture will certainly help to unravel complex developmental processes such as organogenesis and somatic embryogenesis, which will probably enable to improve the efficiency of regeneration protocols for recalcitrant species. Additionally, metabolomics applied to tissue culture will facilitate the extraction and characterization of complex mixtures of natural plant products of industrial interest. General and specific aspects and applications of plant tissue culture and the advances and perspectives are described in this edition. 10.1007/978-1-4939-8594-4_1