logo logo
Analysis of transcript and metabolite levels in Italian rice (Oryza sativa L.) cultivars subjected to osmotic stress or benzothiadiazole treatment. Baldoni Elena,Mattana Monica,Locatelli Franca,Consonni Roberto,Cagliani Laura R,Picchi Valentina,Abbruscato Pamela,Genga Annamaria Plant physiology and biochemistry : PPB One of the major objectives of rice (Oryza sativa L.) breeding programs is the development of new varieties with higher tolerance/resistance to both abiotic and biotic stresses. In this study, Italian rice cultivars were subjected to osmotic stress or benzothiadiazole (BTH) treatments. An analysis of the expression of selected genes known to be involved in the stress response and (1)H nuclear magnetic resonance ((1)H NMR) metabolic profiling were combined with multivariate statistical analyses to elucidate potential correlations between gene expression or metabolite content and observed tolerant/resistant phenotypes. We observed that the expression of three chosen genes (two WRKY genes and one peroxidase encoding gene) differed between susceptible and resistant cultivars in response to BTH treatments. Moreover, the analysis of metabolite content, in particular in the osmotic stress experiment, enabled discrimination between selected cultivars based on differences in the accumulation of some primary metabolites, primarily sugars. This research highlights the potential usefulness of this approach to characterise rice varieties based on transcriptional or metabolic changes due to adverse environmental conditions. 10.1016/j.plaphy.2013.06.016
Metabolic changes of Phomopsis longicolla fermentation and its effect on antimicrobial activity against Xanthomonas oryzae. Choi Jung Nam,Kim Jiyoung,Ponnusamy Kannan,Lim Chaesung,Kim Jeong Gu,Muthaiya Maria John,Lee Choonghwan Journal of microbiology and biotechnology Bacterial blight, an important and potentially destructive bacterial disease in rice caused by Xanthomonas oryzae pv. oryzae (Xoo), has recently developed resistance to the available antibiotics. In this study, mass spectrometry (MS)-based metabolite profiling and multivariate analysis were employed to investigate the correlation between time-dependent metabolite changes and antimicrobial activities against Xoo over the course of Phomopsis longicolla S1B4 fermentation. Metabolites were clearly differentiated based on fermentation time into phase 1 (days 4-8) and phase 2 (days 10-20) in the principal component analysis (PCA) plot. The multivariate statistical analysis showed that the metabolites contributing significantly for phases 1 and 2 were deacetylphomoxanthone B, monodeacetylphomoxanthone B, fusaristatin A, and dicerandrols A, B, and C as identified by liquid chromatography-mass spectrometry (LC-MS), and dimethylglycine, isobutyric acid, pyruvic acid, ribofuranose, galactofuranose, fructose, arabinose, hexitol, myristic acid, and propylstearic acid were identified by gas chromatography-mass spectrometry (GC-MS)-based metabolite profiling. The most significantly different secondary metabolites, especially deacetylphomoxanthone B, monodeacetylphomoxanthone B, and dicerandrol A, B and C, were positively correlated with antibacterial activity against Xoo during fermentation.
The critical role of cytochrome c maturation (CCM) system in the tolerance of Xanthomonas campestris pv. campestris to phenazines. Wu Jian,Pan Xiayan,Xu Shu,Duan Yabing,Luo Jianying,Zhou Zehua,Wang Jianxin,Zhou Mingguo Pesticide biochemistry and physiology Phenazine-1-carboxylic acid (PCA), a secondary metabolite produced by Pseudomonas spp., exhibits a high inhibitory effect in Xanthomonas oryzae pv. oryzae (Xoo), but less inhibitory effect in Xanthomonas oryzae pv. oryzicola (Xoc), and almost no inhibitory effect in Xanthomonas campestris pv. campestris (Xcc). In our previous study, reactive oxygen species (ROS) scavenging system was reported to be involved in PCA tolerance in Xanthomonas spp. However, the PCA tolerance mechanism of Xanthomonas spp. is unclear. In the current study, we constructed a Tn5-based transposon mutant library in Xcc and four highly PCA-sensitive insertion mutants were obtained. TAIL-PCR further confirmed that the Tn5 transposon was inserted in the cytochrome c maturation (CCM) system (XC_1893, XC_1897) of these mutants. Disruption of the CCM system significantly decreased the growth, motility and tolerance of Xcc to PCA and other phenazines, such as phenazine and 1-OH-phenazine. The CCM system is responsible for the covalent attachment of the apocytochrome and heme. Disruption of the transmembrane thioredox protein (Dsb) pathway (XC_0531), an essential process for the formation of mature apocytochrome, also exhibited a decreased tolerance to PCA, suggesting that the defect of cytochrome c caused decreased tolerance of Xcc to PCA. Meanwhile, disruption of the CCM system or Dsb pathway interfered with the functions of cytochrome c proteins, causing an increased sensitivity to HO. Collectively, we concluded that the CCM system and Dsb pathway, regulate the tolerance of Xcc to phenazines by influencing the functions of cytochrome c. Therefore, these results provide important references for revealing the action mechanism of PCA in Xanthomonas spp. 10.1016/j.pestbp.2019.02.003
Screening and characterization of Xanthomonas oryzae pv. oryzae strains with resistance to pheazine-1-carboxylic acid. Pesticide biochemistry and physiology Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight (BLB) and can be effectively controlled by phenazine-1-carboxylic acid (PCA), an antibiotic secreted by Pseudomonas spp. PCA resistance in Xoo was investigated in this research. Only four PCA-resistant strains were obtained by extensive screening, and the resistance was genetically stable in only one of them (P4). P4 was also resistant to phenazine and 1-hydroxyphezine but not to captan, bismerthiazol, or streptomycin. The following were reduced in P4 relative to the parental wild type: growth, virulence, EPS production, extracellular cellulase production and activity, biofilm formation, and swimming ability. ROS accumulation was reduced, resistance to exogenous HO was increased, and expression of catalase genes and catalase activities were increased in P4, suggesting that PCA resistance in P4 results from a reduction in ROS production and/or an increased ability to metabolize ROS following PCA treatment. Given the low risk of Xoo developing PCA resistance and the reduced virulence and fitness of the resistant strain, PCA can be used in alternation with other common bactericides to control BLB in rice fields. 10.1016/j.pestbp.2017.12.003
Effects of phenazine-1-carboxylic acid on the biology of the plant-pathogenic bacterium Xanthomonas oryzae pv. oryzae. Xu Shu,Pan Xiayan,Luo Jianying,Wu Jian,Zhou Zehua,Liang Xiaoyu,He Yawen,Zhou Mingguo Pesticide biochemistry and physiology Xanthomonas oryzae pv. oryzae (Xoo) is the casual agent of bacterial blight, which is one of the most serious diseases of rice. The antibiotic phenazine-1-carboxylic acid (PCA), which is primarily produced by Pseudomonas spp., was found and previously reported very effective against Xoo. However, the biological effects of PCA on Xoo remain unclear. In this study, we found that PCA increased the accumulation of reactive oxygen species (ROS) and reduced the activities of catalase (CAT) and superoxide dismutase (SOD) in Xoo. Xoo was more sensitive to H2O2 than Xanthomonas oryzae pv. oryzicola (Xoc), and had a much lower expression of CAT genes. In addition, proteomic analysis indicated that PCA inhibited carbohydrate metabolism and nutrient uptake in Xoo, and analysis of carbon source utilization further confirmed that carbohydrate metabolism in Xoo was repressed by PCA. In conclusion, PCA acted as a redox-cycling agent that disturbed the redox balance in Xoo and reduced CAT and SOD activities, resulting in higher accumulation of ROS, altered carbohydrate metabolism, and lower energy production and nutrient uptake. Moreover, a deficient antioxidant system in Xoo made it very sensitive to PCA. 10.1016/j.pestbp.2014.10.006