logo logo
A subcutaneous cellular implant for passive immunization against amyloid-β reduces brain amyloid and tau pathologies. Lathuilière Aurélien,Laversenne Vanessa,Astolfo Alberto,Kopetzki Erhard,Jacobsen Helmut,Stampanoni Marco,Bohrmann Bernd,Schneider Bernard L,Aebischer Patrick Brain : a journal of neurology Passive immunization against misfolded toxic proteins is a promising approach to treat neurodegenerative disorders. For effective immunotherapy against Alzheimer's disease, recent clinical data indicate that monoclonal antibodies directed against the amyloid-β peptide should be administered before the onset of symptoms associated with irreversible brain damage. It is therefore critical to develop technologies for continuous antibody delivery applicable to disease prevention. Here, we addressed this question using a bioactive cellular implant to deliver recombinant anti-amyloid-β antibodies in the subcutaneous tissue. An encapsulating device permeable to macromolecules supports the long-term survival of myogenic cells over more than 10 months in immunocompetent allogeneic recipients. The encapsulated cells are genetically engineered to secrete high levels of anti-amyloid-β antibodies. Peripheral implantation leads to continuous antibody delivery to reach plasma levels that exceed 50 µg/ml. In a proof-of-concept study, we show that the recombinant antibodies produced by this system penetrate the brain and bind amyloid plaques in two mouse models of the Alzheimer's pathology. When encapsulated cells are implanted before the onset of amyloid plaque deposition in TauPS2APP mice, chronic exposure to anti-amyloid-β antibodies dramatically reduces amyloid-β40 and amyloid-β42 levels in the brain, decreases amyloid plaque burden, and most notably, prevents phospho-tau pathology in the hippocampus. These results support the use of encapsulated cell implants for passive immunotherapy against the misfolded proteins, which accumulate in Alzheimer's disease and other neurodegenerative disorders. 10.1093/brain/aww036
Impact of TREM2 risk variants on brain region-specific immune activation and plaque microenvironment in Alzheimer's disease patient brain samples. Acta neuropathologica Identification of multiple immune-related genetic risk factors for sporadic AD (sAD) have put the immune system center stage in mechanisms underlying this disorder. Comprehensive analysis of microglia in different stages of AD in human brains revealed microglia activation to follow the progression of AD neuropathological changes and requiring the co-occurrence of beta-Amyloid (Aβ) and tau pathology. Carriers of AD-associated risk variants in TREM2 (Triggering receptor expressed on myeloid cells 2) showed a reduction of plaque-associated microglia and a substantial increase in dystrophic neurites and overall pathological tau compared with age and disease stage matched AD patients without TREM2 risk variants. These findings were substantiated by digital spatial profiling of the plaque microenvironment and targeted gene expression profiling on the NanoString nCounter system, which revealed striking brain region dependent differences in immune response patterns within individual cases. The demonstration of profound brain region and risk-variant specific differences in immune activation in human AD brains impacts the applicability of immune-therapeutic approaches for sAD and related neurodegenerative diseases. 10.1007/s00401-019-02048-2