logo logo
Human and rat gut microbiome composition is maintained following sleep restriction. Zhang Shirley L,Bai Lei,Goel Namni,Bailey Aubrey,Jang Christopher J,Bushman Frederic D,Meerlo Peter,Dinges David F,Sehgal Amita Proceedings of the National Academy of Sciences of the United States of America Insufficient sleep increasingly characterizes modern society, contributing to a host of serious medical problems. Loss of sleep is associated with metabolic diseases such as obesity and diabetes, cardiovascular disorders, and neurological and cognitive impairments. Shifts in gut microbiome composition have also been associated with the same pathologies; therefore, we hypothesized that sleep restriction may perturb the gut microbiome to contribute to a disease state. In this study, we examined the fecal microbiome by using a cross-species approach in both rat and human studies of sleep restriction. We used DNA from hypervariable regions (V1-V2) of 16S bacteria rRNA to define operational taxonomic units (OTUs) of the microbiome. Although the OTU richness of the microbiome is decreased by sleep restriction in rats, major microbial populations are not altered. Only a single OTU, TM7-3a, was found to increase with sleep restriction of rats. In the human microbiome, we find no overt changes in the richness or composition induced by sleep restriction. Together, these results suggest that the microbiome is largely resistant to changes during sleep restriction. 10.1073/pnas.1620673114
Acute Sleep-Wake Cycle Shift Results in Community Alteration of Human Gut Microbiome. Liu Zhi,Wei Zhi-Yuan,Chen Junyu,Chen Kun,Mao Xuhua,Liu Qisha,Sun Yu,Zhang Zixiao,Zhang Yue,Dan Zhou,Tang Junming,Qin Lianhong,Chen Jian-Huan,Liu Xingyin mSphere Disturbances of sleep and the underlying circadian rhythm are related to many human diseases, such as obesity, diabetes, cardiovascular disorders, and cognitive impairments. Dysbiosis of the gut microbiome has also been reported to be associated with the pathologies of these diseases. Therefore, we proposed that disturbed sleep may regulate gut microbiota homeostasis. In this study, we mimicked the sleep-wake cycle shift, one typical type of circadian rhythm disturbances in young people, in recruited subjects. We used 16S rRNA gene amplicon sequencing to define microbial taxa from their fecal samples. Although the relative abundances of the microbes were not significantly altered, the functional-profile analysis of gut microbiota revealed functions enriched during the sleep-wake cycle shift. In addition, the microbial networks were quite distinct among baseline, shift, and recovery stages. These results suggest that an acute sleep-wake cycle shift may exert a limited influence on the gut microbiome, mainly including the functional profiles of the microbes and the microbial relationships within the microbial community. Circadian rhythm misalignment due to social jet lag, shift work, early morning starts, and delayed bedtimes is becoming common in our modern society. Disturbances of sleep and the underlying circadian rhythms are related to multiple human diseases, such as obesity, diabetes, cardiovascular disorders, and cognitive impairments. Given the crucial role of microbiota in the same pathologies as are caused by sleep disturbance, how the gut microbiota is affected by sleep is of increasing interest. The results of this study indicate that the acute circadian rhythm disturbance caused by sleep-wake shifts affect the human gut microbiota, especially the functional profiles of gut microbes and interactions among them. Further experiments with a longer-time-scale intervention and larger sample size are needed to assess the effects of chronic circadian rhythm disruption on the gut microbiome and to guide possible microbial therapies for clinical intervention in the related diseases. 10.1128/mSphere.00914-19
Gut Microbiota as an Objective Measurement for Auxiliary Diagnosis of Insomnia Disorder. Liu Bingdong,Lin Weifeng,Chen Shujie,Xiang Ting,Yang Yifan,Yin Yulong,Xu Guohuan,Liu Zhihong,Liu Li,Pan Jiyang,Xie Liwei Frontiers in microbiology Insomnia is a type of sleep disorder which is associated with various diseases' development and progression, such as obesity, type II diabetes and cardiovascular diseases. Recent investigation of the gut-brain axis enhances our understanding of the role of the gut microbiota in brain-related diseases. However, whether the gut microbiota is associated with insomnia remains unknown. In the present investigation, leveraging the 16S rDNA amplicon sequencing of V3-V4 region and the novel bioinformatic analysis, it was demonstrated that between insomnia and healthy populations, the composition, diversity and metabolic function of the gut microbiota are significantly changed. Other than these, redundancy analysis, co-occurrence analysis and PICRUSt underpin the gut taxa composition, signaling pathways, and metabolic functions perturbed by insomnia disorder. Moreover, random forest together with cross-validation identified two signature bacteria, which could be used to distinguish the insomnia patients from the healthy population. Furthermore, based on the relative abundance and clinical sleep parameter, we constructed a prediction model utilizing artificial neural network (ANN) for auxiliary diagnosis of insomnia disorder. Overall, the aforementioned study provides a comprehensive understanding of the link between the gut microbiota and insomnia disorder. 10.3389/fmicb.2019.01770
Reciprocal Roles of Sleep and Diet in Cardiovascular Health: a Review of Recent Evidence and a Potential Mechanism. St-Onge Marie-Pierre,Zuraikat Faris M Current atherosclerosis reports PURPOSE OF REVIEW:This review investigates the potential bi-directional relation between sleep and diet in considering their contribution to cardiovascular health. We further explore the involvement of the gut microbiome in the relationships between poor sleep and dietary intakes and increased cardiovascular disease (CVD) risk. RECENT FINDINGS:There is strong evidence that sleep restriction leads to unhealthy food choices and increased energy intake. The diet may impact sleep, as well. Epidemiological studies show that higher adherence to a Mediterranean dietary pattern predicts healthier sleep. One factor that could underlie these relationships is the gut microbiome. Although data are mixed, there is some evidence that sleep restriction can influence the composition of the gut microbiome in humans. Similarly, Mediterranean diets and other plant-rich diets are related to increased diversity of the microbiota. At present, few studies have investigated the influence of the microbiome on sleep; however, limited evidence from epidemiological and intervention studies suggest that the composition of the microbiome may relate to sleep quality. More research is needed to better understand the role of the microbiome in the multi-directional relationship between sleep, diet, and CVD. There is growing evidence of a bi-directional relationship between sleep and the diet, which could act in concert to influence CVD risk. Diets such as the Mediterranean diet, comprised of high intakes of fruits, vegetables, and other plant-based foods, may promote healthy sleep and beneficial gut microflora. The gut microbiome may then underlie the relation between diet, sleep, and CVD risk. 10.1007/s11883-019-0772-z