logo logo
Tyramine Functions independently of octopamine in the Caenorhabditis elegans nervous system. Alkema Mark J,Hunter-Ensor Melissa,Ringstad Niels,Horvitz H Robert Neuron Octopamine biosynthesis requires tyrosine decarboxylase to convert tyrosine into tyramine and tyramine beta-hydroxylase to convert tyramine into octopamine. We identified and characterized a Caenorhabditis elegans tyrosine decarboxylase gene, tdc-1, and a tyramine beta-hydroxylase gene, tbh-1. The TBH-1 protein is expressed in a subset of TDC-1-expressing cells, indicating that C. elegans has tyraminergic cells that are distinct from its octopaminergic cells. tdc-1 mutants have behavioral defects not shared by tbh-1 mutants. We show that tyramine plays a specific role in the inhibition of egg laying, the modulation of reversal behavior, and the suppression of head oscillations in response to anterior touch. We propose a model for the neural circuit that coordinates locomotion and head oscillations in response to anterior touch. Our findings establish tyramine as a neurotransmitter in C. elegans, and we suggest that tyramine is a genuine neurotransmitter in other invertebrates and possibly in vertebrates as well. 10.1016/j.neuron.2005.02.024
Optimization of a GCaMP calcium indicator for neural activity imaging. The Journal of neuroscience : the official journal of the Society for Neuroscience Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Recent efforts in protein engineering have significantly increased the performance of GECIs. The state-of-the art single-wavelength GECI, GCaMP3, has been deployed in a number of model organisms and can reliably detect three or more action potentials in short bursts in several systems in vivo. Through protein structure determination, targeted mutagenesis, high-throughput screening, and a battery of in vitro assays, we have increased the dynamic range of GCaMP3 by severalfold, creating a family of "GCaMP5" sensors. We tested GCaMP5s in several systems: cultured neurons and astrocytes, mouse retina, and in vivo in Caenorhabditis chemosensory neurons, Drosophila larval neuromuscular junction and adult antennal lobe, zebrafish retina and tectum, and mouse visual cortex. Signal-to-noise ratio was improved by at least 2- to 3-fold. In the visual cortex, two GCaMP5 variants detected twice as many visual stimulus-responsive cells as GCaMP3. By combining in vivo imaging with electrophysiology we show that GCaMP5 fluorescence provides a more reliable measure of neuronal activity than its predecessor GCaMP3. GCaMP5 allows more sensitive detection of neural activity in vivo and may find widespread applications for cellular imaging in general. 10.1523/JNEUROSCI.2601-12.2012