logo logo
Qishen Granule alleviates endoplasmic reticulum stress-induced myocardial apoptosis through IRE-1-CRYAB pathway in myocardial ischemia. Zhang Qian,Shi Jun,Guo Dongqing,Wang Qiyan,Yang Xiaomin,Lu Wenji,Sun Xiaoqian,He Hao,Li Ning,Wang Yong,Li Chun,Wang Wei Journal of ethnopharmacology ETHNOPHARMACOLOGICAL RELEVANCE:Qishen Granule (QSG) is a prevailing traditional Chinese medicine formula that displays impressive cardiovascular protection in clinical. However, underlying mechanisms by which QSG alleviates endoplasmic reticulum (ER) stress-induced apoptosis in myocardial ischemia still remain unknown. AIM OF THE STUDY:This study aims to elucidate whether QSG ameliorates ER stress-induced myocardial apoptosis to protect against myocardial ischemia via inositol requiring enzyme 1 (IRE-1)-αBcrystallin (CRYAB) signaling pathway. MATERIALS AND METHODS:Left anterior descending (LAD) ligation induced-ischemic heart model and oxygen-glucose deprivation-reperfusion (OGD/R)-induced H9C2 cells injury model were established to clarify the effects and potential mechanism of QSG. Ethanol extracts of QSG (2.352 g/kg) were orally administered for four weeks and Ginaton Tablets (100 mg/kg) was selected as a positive group in vivo. In vitro, QSG (800 μg/ml) or STF080310 (an inhibitor of IRE-1, 10 μM) was co-cultured under OGD/R in H9C2 cells. Inhibition of IRE-1 was conducted in H9C2 cells to further confirm the exact mechanism. Finally, to define the active components of anti-cardiomyocyte apoptosis in QSG which absorbed into the blood, we furtherly used the OGD/R-induced cardiomyocyte apoptosis model to evaluate the effects. RESULTS:QSG treatment improved cardiac function, ameliorated inflammatory cell infiltration and myocardial apoptosis. Similar effects were revalidated in OGD/R-induced H9C2 injury model. Western blots demonstrated QSG exerted anti-apoptotic effects by regulating apoptosis-related proteins, including increasing Bcl-2 and caspase 3/12, reducing the expressions of Bax and cleaved-caspase 3/12. Mechanistically, the IRE-1-CRYAB signaling pathway was significantly activated by QSG. Co-treatment with STF080310, the IRE-1 specific inhibitor significantly compromised the protective effects of QSG in vitro. Especially, the active components of QSG including Formononetin, Tanshinone IIA, Tanshinone I, Cryptotanshinon and Harpagoside showed significantly anti-apoptosis effects. CONCLUSION:QSG protected against ER stress-induced myocardial apoptosis via the IRE-1-CRYAB pathway, which is proposed as a promising therapeutic target for myocardial ischemia. 10.1016/j.jep.2020.112573
Formononetin may protect aged hearts from ischemia/reperfusion damage by enhancing autophagic degradation. Molecular medicine reports Myocardial infarction is a leading cause of mortality worldwide, and timely blood/oxygen reperfusion may substantially improve the outcome of infarction. However, ischemia/reperfusion (I/R) may cause severe side effects through excess reactive oxygen species generation. To develop novel methods to relieve I/R induced cell damage, the present study used a component of traditional Chinese medicine. In the present study, isolated heart tissue from aged mice and H9C2 cells with chemically‑induced aging were used as experimental subjects, and it was demonstrated that formononetin was able to alleviate I/R‑induced cell or tissue apoptosis. By applying formononetin to I/R‑damaged tissue or cells, it was demonstrated that formononetin was able to enhance autophagy and thus alleviate I/R‑induced cell damage. Furthermore, it was observed that I/R was able to inhibit lysosomal degradation processes in aged tissues or cells by impairing the lysosome acidification level, and formononetin was able to reverse this process via the re‑acidification of lysosomes. In conclusion, the present study demonstrated that formononetin was able to alleviate I/R‑induced cellular apoptosis in aged cells by facilitating autophagy. 10.3892/mmr.2018.9544
A network pharmacology integrated pharmacokinetics strategy for uncovering pharmacological mechanism of compounds absorbed into the blood of Dan-Lou tablet on coronary heart disease. Ding Mingya,Ma Wenfang,Wang Xiaoyan,Chen Shujing,Zou Shuhan,Wei Jinna,Yang Yuqiao,Li Jin,Yang Xuejing,Wang Hui,Li Yuhong,Wang Qilong,Mao Haoping,Gao Xiu-Mei,Chang Yan-Xu Journal of ethnopharmacology ETHNOPHARMACOLOGICAL RELEVANCE:Dan-Lou tablet (DLT) is developed from the traditional Chinese medicine (TCM) formula Gualou Xiebai Baijiu Tang which has been used for at least 2000 years in China. DLT has been widely used in clinical practice to treat cardiovascular diseases. AIM OF THE STUDY:This study aimed to uncover the pharmacological mechanism of the compounds absorbed into the blood of Dan-Lou tablet (DLT) on coronary heart disease (CHD) using a network pharmacology integrated pharmacokinetics strategy. MATERIALS AND METHODS:A rapid and sensitive method was developed for the simultaneous determination of the six compounds (puerarin, formononetin, calycosin, paeoniflorin, cryptotanshinone and tanshinone IIA) in rat plasma by liquid chromatography tandem mass spectrometry (LC-MS/MS). Then, the pharmacology network was established based on the relationship between five compounds absorbed into the blood targets (puerarin, formononetin, calycosin, cryptotanshinone and tanshinone IIA) and CHD targets. RESULTS:The intra-and inter-day precision were less than 11% and the accuracy ranged from 88.2% to 112%, which demonstrated that the LC-MS/MS method could be used to evaluate the pharmacokinetic feature of the six compounds in rats after oral administration of DLT. The pathway enrichment analysis revealed that the significant bioprocess networks of DLT on CHD were positive regulation of estradiol secretion, negative regulation of transcription from RNA polymerase II promoter, lipopolysaccharide-mediated signaling pathway and cytokine activity. CONCLUSION:The proposed network pharmacology integrated pharmacokinetics strategy provides a combination method to explore the therapeutic mechanism of the compounds absorbed into the blood of multi-component drugs on a systematic level. 10.1016/j.jep.2019.112055
Plant Natural Products Calycosin and Gallic Acid Synergistically Attenuate Neutrophil Infiltration and Subsequent Injury in Isoproterenol-Induced Myocardial Infarction: A Possible Role for Leukotriene B4 12-Hydroxydehydrogenase? Cheng Yuanyuan,Zhao Jia,Tse Hung Fat,Le X Chris,Rong Jianhui Oxidative medicine and cellular longevity Leukotriene B4 12-hydroxydehydrogenase (LTB4DH) catalyzes the oxidation of proinflammatory LTB4 into less bioactive 12-oxo-LTB4. We recently discovered that LTB4DH was induced by two different natural products in combination. We previously isolated gallic acid from Radix Paeoniae through a bioactivity-guided fractionation procedure. The purpose of this study is to test the hypothesis that LTB4DH inducers may suppress neutrophil-mediated inflammation in myocardial infarction. We first isolated the active compound(s) from another plant, Radix Astragali, by the similar strategy. By evaluating LTB4DH induction, we identified calycosin and formononetin from Radix Astragali by HPLC-ESI-MS technique. We confirmed that gallic acid and commercial calycosin or formononetin could synergistically induce LTB4DH expression in HepG2 cells and human neutrophils. Moreover, calycosin and gallic acid attenuated the effects of LTB4 on the survival and chemotaxis of neutrophil cell culture. We further demonstrated that calycosin and gallic acid synergistically suppressed neutrophil infiltration and protected cardiac integrity in the isoproterenol-induced mice model of myocardial infarction. Calycosin and gallic acid dramatically suppressed isoproterenol-induced increase in myeloperoxidase (MPO) activity and malondialdehyde (MDA) level. Collectively, our results suggest that LTB4DH inducers (i.e., calycosin and gallic acid) may be a novel combined therapy for the treatment of neutrophil-mediated myocardial injury. 10.1155/2015/434052
Formononetin induces vasorelaxation in rat thoracic aorta via regulation of the PI3K/PTEN/Akt signaling pathway. Li Teng,Zhong Yuanyuan,Tang Tao,Luo Jiekun,Cui Hanjin,Fan Rong,Wang Yang,Wang Dongsheng Drug design, development and therapy BACKGROUND:Formononetin (FMN) is an isoflavone that produces arterial vasodilation. However, the underlying molecular mechanisms are unclear. PURPOSE:The purpose of this study was to explore the vasorelaxant effect and the potential mechanism of FMN in vascular endothelium in isolated rat aorta. METHODS:The thoracic aortas of Sprague Dawley rats were isolated to test the arterial reactivity in the presence of FMN with or without inhibitors. Bioinformatics analyses, including a Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine and molecular docking methods, were performed to predict therapeutic targets responsible for the vascular protection produced by FMN. We used rat aortic endothelial cells (RAOECs) as an in vitro model to verify the potential mechanism through molecular biological analyses. The production of nitric oxide (NO) metabolites were evaluated via an NO assay kit according to the manufacturer's instruction. The mRNA expression of eNOS was analyzed by polymerase chain reaction, and the protein levels of PTEN, phosphorylated Akt, and eNOS were measured by Western blot. RESULTS:We found that FMN dilated rat aortic rings in a concentration-dependent manner, which was reduced by endothelium denudation and eNOS inhibition. The bioinformatics analyses indicated that FMN activity was associated with the PI3K/PTEN/Akt signaling pathway. Molecular biological studies demonstrated that FMN significantly elevated the levels of NO and eNOS mRNA and markedly increased the protein expression of phosphorylated Akt and eNOS in RAOECs, and decreased PTEN compared with a dimethyl sulfoxide group. CONCLUSION:FMN performs vasorelaxation of the thoracic aorta through activating the PI3K/PTEN/Akt signaling pathway. 10.2147/DDDT.S180837
Formononetin protects against balloon injury‑induced neointima formation in rats by regulating proliferation and migration of vascular smooth muscle cells via the TGF‑β1/Smad3 signaling pathway. Song Tao,Zhao Jingdong,Jiang Tongbai,Jin Xing,Li Yubin,Liu Xinrong International journal of molecular medicine The present study investigated the effects of formononetin (FMN) against balloon injury‑induced neointima formation in vivo and platelet‑derived growth factor (PDGF)‑BB‑induced proliferation and migration of vascular smooth muscle cells (VSMCs) in vitro, and explored the underlying mechanisms. A rat model of carotid artery injury was established, in order to examine the effects of FMN on balloon injury‑induced neointima formation. Histological observation of the carotid artery tissues was conducted by hematoxylin and eosin staining. VSMC proliferation during neointima formation was observed by proliferating cell nuclear antigen staining. Subsequently, rat aortic VSMCs were isolated, and the effects of FMN on PDGF‑BB‑induced VSMC proliferation and migration were determined using Cell Counting Kit‑8 and Transwell/wound healing assays, respectively. Immunohistochemical and immunocytochemical staining was applied to measure the expression of transforming growth factor (TGF)‑β in carotid artery tissues and VSMCs, respectively. SMAD family member 3 (Smad3)/phosphorylated (p)‑Smad3 expression was examined by western blotting. FMN treatment significantly inhibited the abnormal proliferation of smooth muscle cells in neointima, and alterations to the vascular structure were attenuated. In addition, pretreatment with FMN effectively inhibited the proliferation of PDGF‑BB‑stimulated VSMCs (P<0.05). FMN also reduced the number of cells that migrated to the lower surface of the Transwell chamber and decreased wound‑healing percentage (P<0.05). The expression levels of TGF‑β were decreased by FMN treatment in vivo and in vitro, and Smad3/p‑Smad3 expression was also markedly inhibited. In conclusion, FMN significantly protected against balloon injury‑induced neointima formation in the carotid artery of a rat model; this effect may be associated with the regulation of VSMC proliferation and migration through altered TGF‑β1/Smad3 signaling. 10.3892/ijmm.2018.3784
Formononetin attenuates osteoclastogenesis via suppressing the RANKL-induced activation of NF-κB, c-Fos, and nuclear factor of activated T-cells cytoplasmic 1 signaling pathway. Huh Jeong-Eun,Lee Wong In,Kang Jung Won,Nam Dongwoo,Choi Do-Young,Park Dong-Suk,Lee Sang Hoon,Lee Jae-Dong Journal of natural products Formononetin (1), a plant-derived phytoestrogen, possesses bone protective properties. To address the potential therapeutic efficacy and mechanism of action of 1, we investigated its antiosteoclastogenic activity and its effect on nuclear factor-kappaB ligand (RANKL)-induced bone-marrow-derived macrophages (BMMs). Compound 1 markedly inhibited RANKL-induced osteoclast differentiation in the absence of cytotoxicity, by regulating the expression of osteoprotegerin (OPG) and RANKL in BMMs and in cocultured osteoblasts. Compound 1 significantly inhibited RANKL-induced tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), regulated on activation normal T cell expressed and secreted (RANTES), and macrophage inflammatory protein-1α (MIP-1α) in a concentration-dependent manner. These effects were accompanied by a decrease in RANKL-induced activation of the NF-κB p65 subunit, degradation of inhibitor κBα (IκBα), induction of NF-κB, and phosphorylation of AKT, extracellular-signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK). NF-κB siRNA suppressed AKT, ERK, JNK, and p38 MAPK phosphorylation. Furthermore, 1 significantly suppressed c-Fos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), key transcription factors during osteoclastogenesis. SP600125, a specific inhibitor of JNK, reduced RANKL-induced expression of phospho-c-Jun, c-Fos, and NFATc1 and inhibited osteoclast formation. These results suggested that 1 acted as an antiresorption agent by blocking osteoclast activation. 10.1021/np500417d
Formononetin and biochanin A protects against ritonavir induced hepatotoxicity via modulation of NfκB/pAkt signaling molecules. Alauddin ,Chaturvedi Swati,Malik Mohd Yaseen,Azmi Lubna,Shukla Ila,Naseem Zaiba,Rao ChandanaVenkateswara,Agarwal Naresh Kumar Life sciences AIMS:Ritonavir (RIT) is a human immune deficiency virus (HIV) protease inhibitor (PI) active against HIV-1 and HIV-2. Among various adverse effects of PIs, hepatotoxicity is a very common adverse reaction of RIT which is concentration dependent. Red clover isoflavones are found to possess anti-inflammatory, antioxidant and anti-apoptosis activity. Furthermore, recent studies have demonstrated that these isoflavones can be used to alleviate the side-effects of drugs. Hence, the present study was inquested to ascertain the effect of Formononetin (FMN) and Biochanin A (BCA) on RIT induced hepatotoxicity. MAIN METHODS:Five groups of animals were subjected to treatment as control, toxic control (RIT), third group (RIT + FMN), fourth group (RIT + BCA), the fifth group (RIT + FMN + BCA) and sixth group (FMN + BCA) for 14 days. The animals were evaluated for estimation of liver toxicity markers, inflammatory biomarkers, in-vivo biochemical antioxidant parameters. The liver tissues were further evaluated histopathologically and western blotting examination for localization of apoptotic gene expression that plays a pivotal role in hepatotoxicity. KEY FINDINGS:FMN and BCA ameliorated the increased levels of biochemical markers of liver, attenuated the RIT induced Bax, caspase-3, NFκB and eNOS activation and persuaded the Bcl and pAkt level. Alteration in the levels of inflammatory markers was also observed in both hepatic tissue and serum. SIGNIFICANCE:FMN and BCA exerts hepatoprotective effect through modulating the oxidative stress, inflammation, apoptosis and reversing the tissue degeneration suggesting its therapeutic role in hepatotoxicity and other hepatocellular diseases. 10.1016/j.lfs.2018.10.023
The protective effect of formononetin on cognitive impairment in streptozotocin (STZ)-induced diabetic mice. Wang Jinchun,Wang Lei,Zhou Jie,Qin Aiping,Chen Zhujing Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie The present study was aimed to elucidate the pharmacological effect of Formononetin (FMN) treatment on STZ-induced diabetic cognitive dysfunction. The diabetic model was induced by an intraperitoneally injection of 180 mg/kg STZ. The animals were randomly divided into five groups: control group, streptozocin (STZ, 180 mg/kg) group, STZ + metformin (Met, 200 mg/kg) group, STZ + FMN (25 mg/kg) group, STZ + FMN (50 mg/kg) group. The mice were intragastrically administrated with metformin (Met, 200 mg/kg) or FMN (25, 50 mg/kg) once daily for 6 weeks. The blood glucose content and body weight were examined. Morris water maze test and Y maze test were used to evaluate the learning and memory abilities. The cognitive decline was reversed by regulating superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor-a (TNF-α), interleukin(IL)-1β, IL-6 in serum and hippocampus. The protein expressions of high mobility group box-1 protein (HMGB1), toll like receptor 4 (TLR4), myeloid differentiating factor 88 (MyD88), inhibitor of NF-κB (IκBα), p-IκBα, nuclear factor kappa-B(NF-κB), p-NF-κB, NOD-like receptor 3(NLRP3), apoptosis-associated speck-like protein containing CARD(ASC) and caspase-1 were detected. Furthermore, the SH-SY5Y cells were exposed to high glucose stimulation, FMN (2.5, 5 and 10 μM) treatment, and glycyrrhizin, the selective inhibitor of HMGB1. After an incubation for 22 h, the SH-SY5Y cells were harvested for detection. As a result, FMN treatment effectively attenuated the body weight, learning and memory abilities, as well as the levels of blood glucose, SOD, MDA, TNF-α, IL-1β, IL-6. FMN administration also downregulated the protein expressions of HMGB1, TLR4, MyD88, p-IκB, p-NF-κB, NLRP3, ASC and caspase-1. The inhibition of HMGB1 by glycyrrhizin also confirmed the involvement of HMGB1/TLR4/NF-κB/NLRP3 pathway in high glucose-induced SH-SY5Y cells. In summary, the results suggested that FMN exhibited the protective effect on STZ-induced cognitive impairment possibly via the mediation of HMGB1/TLR4/NF-κB signaling and NLRP3 inflammasome. 10.1016/j.biopha.2018.07.063
Formononetin Attenuates Airway Inflammation and Oxidative Stress in Murine Allergic Asthma. Yi La,Cui Jie,Wang Wenqian,Tang Weifeng,Teng Fangzhou,Zhu Xueyi,Qin Jingjing,Wuniqiemu Tulake,Sun Jing,Wei Ying,Dong Jingcheng Frontiers in pharmacology Allergic asthma has been considered as a respiratory disorder with pathological features of airway inflammation and remodeling, which involves oxidative stress. Formononetin (FMT) is a bioactive isoflavone obtained from Chinese herb Radix Astragali, and has been reported to have notable anti-inflammatory and antioxidant effects in several diseases. The purpose of our study was to elaborate the effects of FMT on asthma and the underlying mechanisms. To establish allergic asthma model, BALB/c mice were given ovalbumin (OVA) sensitization and challenge, treated with FMT (10, 20, 40 mg/kg) or dexamethasone (2 mg/kg). The effects of FMT on lung inflammation and oxidative stress were assessed. In OVA-induced asthmatic mice, FMT treatments significantly ameliorated lung function, alleviated lung inflammation including infiltration of inflammatory cells, the elevated levels of interleukin (IL)-4, IL-5, and IL-13, immunoglobulin (Ig) E, C-C motif chemokine ligand 5 (CCL5, also known as RANTES), CCL11 (also called Eotaxin-1), and IL-17A. In addition, FMT treatments eminently blunted goblet cell hyperplasia and collagen deposition, and remarkably reduced oxidative stress as displayed by decreased reactive oxygen species (ROS), and increased superoxide diamutase (SOD) activity. Furthermore, to clarify the potential mechanisms responsible for the effects, we determined the inflammation and oxidation-related signaling pathway including nuclear factor kappa β (NF-κB), c-Jun N-terminal kinase (JNK), and the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). FMT treatments appeared to dramatically inhibit the activation of NF-κB and JNK, significantly elevated the expression of heme oxygenase 1 (HO-1) but failed to activate expression of Nrf2. In conclusion, our study suggested that FMT had the therapeutic effects in attenuating airway inflammation and oxidative stress in asthma. 10.3389/fphar.2020.533841
Formononetin ameliorates oxaliplatin-induced peripheral neuropathy via the KEAP1-NRF2-GSTP1 axis. Fang Yuan,Ye Juan,Zhao Bing,Sun Jinbing,Gu Na,Chen Xi,Ren Lingli,Chen Jiao,Cai Xueting,Zhang Wenjuan,Yang Yang,Cao Peng Redox biology Management of oxaliplatin-induced peripheral neuropathy (OIPN) has proven challenging owing to the concern that any OIPN-preventing agents may also decrease the efficacy of the chemotherapeutic agent and fail to reverse established neuronal damage. Nevertheless, targeting redox signaling pathways constitutes a promising therapy in OIPN and we have previously demonstrated the protective role of nuclear factor erythroid-2 related factor 2 (NRF2) in this disorder. Here, we investigated the protective properties of formononetin (FN), a clinical preparation extract, in OIPN. RNA interference experiments revealed that FN protects against OIPN directly through activation of the NRF2 pathway. Further expression profile sequencing showed that FN exerts its protective effect via the NRF2 downstream-oxaliplatin metabolism enzyme, GSTP1. We also demonstrated that FN does not influence the chemotherapeutic function of oxaliplatin, as NRF2 exhibits a different drug metabolic enzyme activation state downstream in colorectal cell lines than that in neurons. Following synthesis of Bio-FN to screen the target binding proteins, we found that FN selectively binds to His129 and Lys131 in the BTB domain of KEAP1. In vivo experiments revealed that FN-induced activation of the NRF2 signaling pathway alleviated the nociceptive sensations in mice. Our findings highlight a new binding mechanism between KEAP1 and isoflavones for activation of the NRF2 system and suggest that pharmacological or therapeutic activation of the NRF2-GSTP1 axis may serve as an effective strategy to prevent or attenuate the progression of OIPN. 10.1016/j.redox.2020.101677
Neuroprotective effects of formononetin against NMDA-induced apoptosis in cortical neurons. Tian Zhen,Liu Shui-Bing,Wang Yu-Cai,Li Xiao-Qiang,Zheng Lian-He,Zhao Ming-Gao Phytotherapy research : PTR Formononetin (FMNT) is an isoflavone found in many herbs including Trifolium pratense L., Spatholobus suberectus Dunn., and Astragalus mongholicus Bunge. The purpose of this study is to investigate pharmacological properties of FMNT on neurotoxicity induced by N-methyl-D-asparate (NMDA) in primary-cultured cortical neurons. The cell viability was significantly decreased after exposure to NMDA (200 μM) for 40 min. Pretreatment of FMNT (10 μM) for 12 h significantly attenuated the cell loss induced by NMDA exposure. Flow cytometry analysis revealed that treatment of FMNT attenuated the number of apoptotic cells, especially the early phase apoptotic cells, induced by NMDA exposure. Western blot analysis showed that FMNT regulated the expression of apoptosis-related proteins by increasing the levels of Bcl-2 and pro-caspase-3 and decreasing the levels of Bax and caspase-3. These findings demonstrate that FMNT is capable of protecting neurons from NMDA-evoked excitotoxic injury and has a potential perspective to the clinical treatment for neurodegenerative disorders in central nervous system. 10.1002/ptr.4928
Formononetin mediates neuroprotection against cerebral ischemia/reperfusion in rats via downregulation of the Bax/Bcl-2 ratio and upregulation PI3K/Akt signaling pathway. Liang Kun,Ye Yu,Wang Yong,Zhang Jianfeng,Li Chaoqian Journal of the neurological sciences Isoflavone formononetin is a typical phytoestrogen isolated from Chinese medical herb red clover. It has been reported that estrogens have neuroprotective properties, and dietary intake of phytoestrogens could reduce stroke injury in cerebral ischemia/reperfusion (I/R) animal models. In the present research, we sought to investigate the molecular mechanisms underlying the neuroprotective effects of formononetin on I/R rats. Male Sprague-Dawley rats were subjected to a 2 h period of right middle cerebral artery occlusion (MCAO) followed by 24 h of reperfusion. Then neurological deficits and brain edema were evaluated. To provide insight into the functions of phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK (mitogen-activated protein kinase) signaling pathway in formononetin-induced neuroprotection, the expression of ER-α, Bax, Bcl-2, p-Akt (phosphorylated protein kinase B), and p-ERK1/2 (phosphorylated extracellular signal-regulated kinases 1/2) was determined by qPCR or Western blot assay. Consequently, we found that formononetin has significantly reduced the infarcted volume and the brain water content, and improved the neurological deficit. Formononetin also exhibited an upregulation in ER-α and p-Akt, a downregulation in the ratio of Bax/Bcl-2. However, formononetin had little effect on p-ERK1/2 proteins expression. Taken together, formononetin has shown neuroprotective effects in cerebral I/R rats, and the molecular mechanisms may correlate with the downregulation of the Bax/Bcl-2 ratio and the activation of PI3K/Akt signaling pathway. 10.1016/j.jns.2014.06.033
Plant Natural Product Formononetin Protects Rat Cardiomyocyte H9c2 Cells against Oxygen Glucose Deprivation and Reoxygenation via Inhibiting ROS Formation and Promoting GSK-3β Phosphorylation. Cheng Yuanyuan,Xia Zhengyuan,Han Yifan,Rong Jianhui Oxidative medicine and cellular longevity The opening of mitochondrial permeability transition pore (mPTP) is a major cause of cell death in ischemia reperfusion injury. Based on our pilot experiments, plant natural product formononetin enhanced the survival of rat cardiomyocyte H9c2 cells during oxygen glucose deprivation (OGD) and reoxygenation. For mechanistic studies, we focused on two major cellular factors, namely, reactive oxygen species (ROS) and glycogen synthase kinase 3β (GSK-3β), in the regulation of mPTP opening. We found that formononetin suppressed the formation of ROS and superoxide in a concentration-dependent manner. Formononetin also rescued OGD/reoxygenation-induced loss of mitochondrial membrane integrity. Further studies suggested that formononetin induced Akt activation and GSK-3β (Ser9) phosphorylation, thereby reducing GSK-3β activity towards mPTP opening. PI3K and PKC inhibitors abolished the effects of formononetin on mPTP opening and GSK-3β phosphorylation. Immunoprecipitation experiments further revealed that formononetin increased the binding of phosphor-GSK-3β to adenine nucleotide translocase (ANT) while it disrupted the complex of ANT with cyclophilin D. Moreover, immunofluorescence revealed that phospho-GSK-3β (Ser9) was mainly deposited in the space between mitochondria and cell nucleus. Collectively, these results indicated that formononetin protected cardiomyocytes from OGD/reoxygenation injury via inhibiting ROS formation and promoting GSK-3β phosphorylation. 10.1155/2016/2060874
Formononetin inhibited the inflammation of LPS-induced acute lung injury in mice associated with induction of PPAR gamma expression. Ma Zhanqiang,Ji Weiwei,Fu Qiang,Ma Shiping Inflammation Formononetin has shown a variety of pharmacologic properties including anti-inflammatory effect. In the present study, we analyzed the role of formononetin in acute lung injury induced by lipopolysaccharide (LPS) in mice. The cell counting in the bronchoalveolar lavage fluid (BALF) was measured. The animal lung edema degree was evaluated by wet/dry weight ratio. The superoxidase dismutase (SOD) activity and myeloperoxidase (MPO) activity was assayed by SOD and MPO kits, respectively. The levels of inflammatory mediators, tumor necrosis factor-α (TNF-α) and IL-6,were assayed by enzyme-linked immunosorbent assay method. Pathological changes of hung tissues were observed by HE staining. Peroxisome proliferator-activated receptor (PPAR)-γ gene expression was measured by real-time PCR. The data showed that treatment with the formononetin group markedly attenuated inflammatory cell numbers in the BALF, increased PPAR-γ gene expression and improved SOD activity and inhibited MPO activity. The histological changes of the lungs were also significantly improved by formononetin compared to LPS group. The results indicated that formononetin has a protective effect on LPS-induced acute lung injury in mice. 10.1007/s10753-013-9700-5
Formononetin Administration Ameliorates Dextran Sulfate Sodium-Induced Acute Colitis by Inhibiting NLRP3 Inflammasome Signaling Pathway. Wu Dacheng,Wu Keyan,Zhu Qingtian,Xiao Weiming,Shan Qing,Yan Zhigang,Wu Jian,Deng Bin,Xue Yan,Gong Weijuan,Lu Guotao,Ding Yanbing Mediators of inflammation Formononetin is a kind of isoflavone compound and has been reported to possess anti-inflammatory properties. In this present study, we aimed to explore the protective effects of formononetin on dextran sulfate sodium- (DSS-) induced acute colitis. By intraperitoneal injection of formononetin in mice, the disease severity of colitis was attenuated in a dose-dependent manner, mainly manifesting as relieved clinical symptoms of colitis, mitigated colonic epithelial cell injury, and upregulations of colonic tight junction proteins levels (ZO-1, claudin-1, and occludin). Meanwhile, our study found that formononetin significantly prevented acute injury of colonic cells induced by TNF- in vitro, specifically manifesting as the increased expressions of colonic tight junction proteins (ZO-1, claudin-1, and occludin). In addition, the result showed that formononetin could reduce the NLRP3 pathway protein levels (NLRP3, ASC, IL-1) in vivo and vitro, and MCC950, the NLRP3 specific inhibitor, could alleviate the DSS-induced mice acute colitis. Furthermore, in the foundation of administrating MCC950 to inhibit activation of NLRP3 inflammasome, we failed to observe the protective effects of formononetin on acute colitis in mice. Collectively, our study for the first time confirmed the protective effects of formononetin on DSS-induced acute colitis via inhibiting the NLRP3 inflammasome pathway activation. 10.1155/2018/3048532
Formononetin inhibits neuroinflammation and increases estrogen receptor beta (ERβ) protein expression in BV2 microglia. El-Bakoush Abdelmeniem,Olajide Olumayokun A International immunopharmacology Formononetin is a bioactive non-steroidal polyphenol found in a variety of plants. In this study we evaluated the effects of formononetin on neuroinflammation in LPS-stimulated BV2 microglia. Results showed that formononetin significantly reduced the production of TNF-α, IL-6 and IL-1β, nitrite and PGE, as well as protein levels of iNOS and COX-2. Reporter gene assays showed that formononetin produced inhibition of NF-κB luciferase activity in HEK293 cells stimulated with TNF-α. Immunoblotting experiments revealed an inhibition of IKKα phosphorylation, with the resultant attenuation of phosphorylation and degradation of IκBα following LPS stimulation. Formononetin also produced an inhibition of nuclear translocation and DNA binding by NF-κB following LPS stimulation. RNAi experiments showed that transfection of BV2 microglia with ERβ siRNA resulted in the loss of anti-inflammatory action of formononetin. MTT assay and MAP2 immunoreactivity experiments showed that formononetin produced significant neuroprotective activity by preventing BV2 microglia conditioned media-induced toxicity to HT22 neurons. Investigations on the effect of formononetin on MCF7 breast cancer cells revealed that, while the compound significantly increased ER-luciferase activity, its effects on proliferation were modest. This study has established that formononetin inhibits neuroinflammation by targeting NF-κB signalling pathway in BV2 microglia, possibly through mechanisms involving ERβ. Formononetin appears to modulate ERβ in MCF7 breast cancer cells with limited proliferative effect. Formononetin could therefore serve as a chemical scaffold for the development of novel compounds which have selective neuroprotective actions in the brain. 10.1016/j.intimp.2018.06.016
Formononetin: A Review of Its Anticancer Potentials and Mechanisms. Tay Kai-Ching,Tan Loh Teng-Hern,Chan Chim Kei,Hong Sok Lai,Chan Kok-Gan,Yap Wei Hsum,Pusparajah Priyia,Lee Learn-Han,Goh Bey-Hing Frontiers in pharmacology Cancer, a complex yet common disease, is caused by uncontrolled cell division and abnormal cell growth due to a variety of gene mutations. Seeking effective treatments for cancer is a major research focus, as the incidence of cancer is on the rise and drug resistance to existing anti-cancer drugs is major concern. Natural products have the potential to yield unique molecules and combinations of substances that may be effective against cancer with relatively low toxicity/better side effect profile compared to standard anticancer therapy. Drug discovery work with natural products has demonstrated that natural compounds display a wide range of biological activities correlating to anticancer effects. In this review, we discuss formononetin (CHO), which originates mainly from red clovers and the Chinese herb . The compound comes from a class of 7-hydroisoflavones with a substitution of methoxy group at position 4. Formononetin elicits antitumorigenic properties and by modulating numerous signaling pathways to induce cell apoptosis (by intrinsic pathway involving Bax, Bcl-2, and caspase-3 proteins) and cell cycle arrest (by regulating mediators like cyclin A, cyclin B1, and cyclin D1), suppress cell proliferation [by signal transducer and activator of transcription (STAT) activation, phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT), and mitogen-activated protein kinase (MAPK) signaling pathway], and inhibit cell invasion [by regulating growth factors vascular endothelial growth factor (VEGF) and Fibroblast growth factor 2 (FGF2), and matrix metalloproteinase (MMP)-2 and MMP-9 proteins]. Co-treatment with other chemotherapy drugs such as bortezomib, LY2940002, U0126, sunitinib, epirubicin, doxorubicin, temozolomide, and metformin enhances the anticancer potential of both formononetin and the respective drugs through synergistic effect. Compiling the evidence thus far highlights the potential of formononetin to be a promising candidate for chemoprevention and chemotherapy. 10.3389/fphar.2019.00820