logo logo
Cytoplasmic mislocalization of p27Kip1 protein is associated with constitutive phosphorylation of Akt or protein kinase B and poor prognosis in acute myelogenous leukemia. Min Yoo Hong,Cheong June-Won,Kim Ji Yeon,Eom Ju In,Lee Seung Tae,Hahn Jee Sook,Ko Yun Woong,Lee Mark Hong Cancer research Cyclin-dependent kinase inhibitor p27Kip1 functions at the nuclear level by binding to cyclin E/cyclin-dependent kinase-2. It was shown that Akt or protein kinase B (Akt/PKB)-dependent phosphorylation of p27Kip1 led to the cytoplasmic mislocalization of p27Kip1, suggesting the potential abrogation of its activity. Here, we evaluated the localization of p27Kip1 protein in leukemic blasts in relation to Akt/PKB phosphorylation and clinical outcomes in acute myelogenous leukemia (AML). Western blot analysis of the nuclear and cytoplasmic fractions revealed a heterogenous localization pattern of p27Kip1 in AML. Cytoplasmic mislocalization of p27Kip1 was significantly associated with the constitutive serine(473) Akt/PKB phosphorylation in AML cells (P < 0.05). Transfection of U937 cells with an expression construct encoding the constitutively active form of Akt/PKB resulted in a remarkable increase in the levels of cytoplasmic p27Kip1. Whereas the transfection of U937 cells with a construct encoding dominant-negative Akt/PKB resulted in a recovery of nuclear localization of p27Kip1. Both the disease-free survival and overall survival are significantly shorter in AML cases with high cytoplasmic to nuclear ratio of p27Kip1 localization compared with the cases with low cytoplasmic to nuclear ratio (P = 0.0353, P = 0.0023, respectively). Multivariate analysis indicated that the cytoplasmic to nuclear ratio of p27Kip1 localization was an independent prognostic variable for both disease-free survival and overall survival (P = 0.043, P = 0.008, respectively). These findings additionally extend our understanding of the role of p27Kip1 in AML, and buttress the case of p27Kip1 mislocalization as a prognostic indicator and Akt/PKB/p27Kip1 pathway as a ready target for antileukemia therapy. 10.1158/0008-5472.CAN-04-0174
Long noncoding RNA PART1 restrains aggressive gastric cancer through the epigenetic silencing of PDGFB via the PLZF-mediated recruitment of EZH2. Han H,Wang S,Meng J,Lyu G,Ding G,Hu Y,Wang L,Wu L,Yang W,Lv Y,Jia S,Zhang L,Ji J Oncogene Current reports refer to the role of long noncoding RNA (lncRNA) prostate androgen-regulated transcript 1 (PART1) as a tumor suppressor in some types of cancer but as an oncogene in other kinds of cancer. In gastric cancer, it had been reported to be downregulated. However, the clinical significance and underlying mechanism of PART1 function in gastric cancer remains undefined. Here, seven differential expression levels of noncoding RNAs (DE-lncRNAs) were screened from gastric cancer through a probe reannotation of a human exon array. PART1 was selected for further study because of its high fold change number. In our cohort, PART1 was identified as a significant downregulated lncRNA in gastric cancer tissues by qPCR and in situ hybridization (ISH), and its low expression was significantly correlated with postoperative metastasis and short overall survival time after surgery. Through the results of gain-of-function experiments, PART1 was confirmed as a tumor suppressor that can decrease not only cell viability, migration, and invasion in vitro but also tumorigenesis and tumor metastasis in vivo. Mechanistically, RNA pull-down and RNA-binding protein immunoprecipitation (RIP) showed that PART1 interacts with androgen receptor (AR), and then, promyelocytic leukemia zinc finger (PLZF) is upregulated in an androgen-independent manner. In a chain reaction, chromatin immunoprecipitation (ChIP) assay additionally illustrated that PLZF upregulation increased the enrichment of EZH2 and H3K27 trimethylation in the platelet-derived growth factor (PDGFB) promotor, thereby inhibition of PDGFB and the subsequent PDGFRβ/PI3K/Akt signaling pathway. Based on these findings, we showed PART1 plays a tumor suppressor role by promoting PLZF expression followed by recruitment of EZH2 to mediate epigenetic PDGFB silencing and downstream PI3K/Akt inhibition, suggesting that PART1 has a key role in restraining the aggressive ability of GC cells and providing a novel perspective on lncRNAs in GC progression. 10.1038/s41388-020-01442-5
lncRNA TUG1 modulates proliferation, apoptosis, invasion, and angiogenesis via targeting miR-29b in trophoblast cells. Human genomics BACKGROUND:Pre-eclampsia (PE) is regarded as the leading cause of maternal and neonatal morbidity and mortality. Nevertheless, the potential mechanism for the regulation of trophoblast behaviors and the pathogenesis of PE remain largely elusive. Recently, accumulating evidence emphasized that aberrant expression of long non-coding RNAs (lncRNAs) functions as imperative regulators in human diseases, including PE. Thus, identifying PE-related specific lncRNAs to uncover the underlying molecular mechanism is of much significance. However, the functional roles and underlying mechanisms of lncRNAs in PE progression remain unclear. METHOD:Placenta tissues obtained from patients with PE and healthy pregnant women were performed to measure TUG1 expression by qRT-PCR analysis. Transient transfections were conducted to alter TUG1 expression. Cell Counting Kit-8 (CCK-8) and flow cytometry assays were carried out to assess cell proliferation and apoptosis, respectively. Transwell and tube formation assays were performed to measure the capacity of cell invasion and angiogenesis. Moreover, the luciferase reporter assay was subjected to verify the binding relationship between TUG1 and miR-29b. Western blot analysis was performed to detect the expression of key proteins in the PI3K/AKT and ERK pathway. RESULTS:Here, we identified a lncRNA, TUG1, which was notably decreased in placental samples of PE patients. Functional experiments of loss- or gain-of-function assays also verified that ectopic expression of TUG1 promoted cell proliferation, invasion, and angiogenesis, but negatively regulated cell apoptosis, whereas TUG1 inhibition presented the opposite effects. Furthermore, mechanistic researches revealed that TUG1 could act as a molecular sponge for miR-29b, thus regulating MCL1, VEGFA, and MMP2 to modulate PE development. CONCLUSIONS:Taken together, our findings demonstrated that TUG1 exerts as a critical role in PE progression, which might furnish a novel therapeutic marker for PE treatment. 10.1186/s40246-019-0237-z
Long non-coding RNA T-cell leukemia/lymphoma 6 serves as a sponge for miR-21 modulating the cell proliferation of retinoblastoma through PTEN. Tao Sisi,Wang Weidong,Liu Pengfei,Wang Hua,Chen Weirong The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology Retinoblastoma (Rb) is one of the most common eye malignancies occur in childhood. The crucial roles of non-coding RNAs, particularly long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been widely reported in Rb progression. In the present study, we found the expression of lncRNA T-cell leukemia/lymphoma 6 (TCL6) was significantly downregulated in Rb tissues and cell lines. Knockdown of lncRNA TCL6 promoted cell proliferation while reduced cell apoptosis in Rb cells. Moreover, lncRNA TCL6 serves as a sponge for miR-21, a previously-reported oncogenic miRNA in Rb, by direct targeting to negatively regulated miR-21 expression, therefore modulating Rb proliferation through miR-21. TCL6 overexpression inhibited Rb cell proliferation while miR-21 overexpression exerted an opposing effect; the effect of TCL6 overexpression was partially attenuated by miR-21 overexpression. PTEN/PI3K/AKT signaling pathway was involved in lncRNA TCL6/miR-21 axis modulating Rb cell proliferation. Taken together, lncRNA TCL6 serves as a tumor suppressor by acting as a sponge for miR-21 to counteract miR-21-mediated PTEN repression. 10.4196/kjpp.2019.23.6.449
Long noncoding RNA TCL6 binds to miR-106a-5p to regulate hepatocellular carcinoma cells through PI3K/AKT signaling pathway. Luo Li-Hua,Jin Min,Wang Lan-Qing,Xu Guo-Jie,Lin Zhen-Yu,Yu Dan-Dan,Yang Sheng-Li,Ran Rui-Zhi,Wu Gang,Zhang Tao Journal of cellular physiology Long noncoding RNAs (lncRNAs) have been reported to dysregulate and involve in the pathology of hepatocellular carcinoma (HCC). Nonetheless, the functional role of lncRNA T cell leukemia/lymphoma 6 (TCL6) and its underlying mechanism in HCC remain unclear. Herein, we analyzed the expression of TCL6 and elucidated its mechanistic involvement in HCC. Bioinformatics analyses indicated TCL6 was evidently downregulated in HCC tissues compared with normal controls. TCL6 was downregulated while microRNA-106a-5p (miR-106a-5p) was upregulated in HCC cell lines. Moreover, knockdown or overexpression of TCL6 significantly raised or diminished the expression level of miR-106a-5p in HCC cells, similar to the effect of miR-106a-5p on TCL6 expression. Functionally, TCL6 inhibited the proliferative, migratory, and invasive potentials of HCC cells as analyzed by cell counting kit-8, scratch wound healing, and transwell assays, respectively. Conversely, miR-106a-5p exerted an opposite effect on the proliferative, migratory, and invasive potentials of HCC. RNA immune precipitation and luciferase reporter assays revealed TCL6 directly bound to miR-106a-5p and luciferase reporter assay verified phosphatase and tensin homolog (PTEN) was a target gene of miR-106a-5p. Mechanistically, TCL6 knockdown evidently reduced PTEN expression at both messenger RNA and protein levels, and miR-106a-5p inhibitor partially rescued this reduction effect in HCC cells. Additionally, western blot assays demonstrated miR-106a-5p downregulation or TCL6 overexpression promoted the protein level of PTEN, and suppressed the phosphorylation level of AKT, the protein level of phosphatidylinositol 3-kinase (PI3K). Collectively, these results revealed TCL6 as a tumor-suppressive lncRNA regulates PI3K/AKT signaling pathway via directly binding to miR-106a-5p in HCC. This mechanism provides a theoretical basis for HCC pathogenesis and a potential therapeutic strategy for HCC treatment. 10.1002/jcp.29544
LncRNA ST3Gal6-AS1/ST3Gal6 axis mediates colorectal cancer progression by regulating α-2,3 sialylation via PI3K/Akt signaling. Hu Jialei,Shan Yujia,Ma Jia,Pan Yue,Zhou Huimin,Jiang Liqun,Jia Li International journal of cancer Sialylation is associated with cancer progression. Long noncoding RNAs (lncRNAs) have important roles in diverse diseases including cancer. The lncRNA ST3Gal6 antisense 1 (ST3Gal6-AS1) derives from the promoter region of sialyltransferase ST3Gal6. However, the mechanisms by which ST3Gal6-AS1 modulates colorectal cancer (CRC) development through sialylation remain largely unknown. Here, we found that ST3Gal6-AS1 and ST3Gal6 levels were lower in tumor tissues than adjacent normal tissues of CRC patients. The correlation between ST3Gal6-AS1 and ST3Gal6 was further validated in several types of CRC cell lines. In addition, ST3Gal6 was dysregulated and positively correlated to ST3Gal6-AS1. ST3Gal6-AS1 recruited histone methyltransferase MLL1 to the promoter region of ST3Gal6, induced H3K4me3 modification and activated ST3Gal6 transcription. Furthermore, ST3Gal6-AS1/ST3Gal6 axis mediated α-2, 3 sialylation and inhibited the activation of PI3K/Akt signaling, thereby resulting in Foxo1 nuclear translocation in CRC cells. ST3Gal6-AS1 was a target of transcription factor Foxo1 and regulated by Foxo1. ST3Gal6-AS1 also inhibited CRC cell proliferation, metastasis, and promoted cell apoptosis in vitro. Overexpression of ST3Gal6-AS1 significantly decreased the tumorigenesis, lung and liver metastasis of SW620 cells in vivo. ST3Gal6-AS1 expression was negatively correlated with tumor size, lymphatic metastasis, distant metastasis and tumor stage in CRC patients. Collectively, these data indicated that ST3Gal6-AS1, ST3Gal6, PI3K/Akt, and Foxo1 formed a positive feedback loop, which might play a key role in CRC progression. 10.1002/ijc.32103
Long non-coding RNA deleted in lymphocytic leukaemia 1 promotes hepatocellular carcinoma progression by sponging miR-133a to regulate IGF-1R expression. Zhang Wei,Liu Songyang,Liu Kai,Liu Yahui Journal of cellular and molecular medicine Long non-coding RNA (lncRNA) deleted in lymphocytic leukaemia 1 (DLEU1) was reported to be involved in the occurrence and development of multiple cancers. However, the exact expression, biological function and underlying mechanism of DLEU1 in hepatocellular carcinoma (HCC) remain unclear. In this study, real-time quantitative polymerase chain reaction (qRT-PCR) in HCC tissues and cell lines revealed that DLEU1 expression was up-regulated, and the increased DLEU1 was closely associated with advanced tumour-node-metastasis stage, vascular metastasis and poor overall survival. Function experiments showed that knockdown of DLEU1 significantly inhibited HCC cell proliferation, colony formation, migration and invasion, and suppressed epithelial to mesenchymal transition (EMT) process via increasing the expression of E-cadherin and decreasing the expression of N-cadherin and Vimentin. Luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay demonstrated that DLEU1 could sponge miR-133a. Moreover, miR-133a inhibition significantly reversed the suppression effects of DLEU1 knockdown on HCC cells. Besides, we found that silenced DLEU1 significantly decreased insulin-like growth factor 1 receptor (IGF-1R) expression (a target of miR-133a) and its downstream signal PI3K/AKT pathway in HCC cells, while miR-133a inhibitor partially reversed this trend. Furthermore, DLEU1 knockdown impaired tumour growth in vivo by regulating miR-133a/IGF-1R axis. Collectively, these findings indicate that DLEU1 promoted HCC progression by sponging miR-133a to regulate IGF-1R expression. Deleted in lymphocytic leukaemia 1/miR-133a/IGF-1R axis may be a novel target for treatment of HCC. 10.1111/jcmm.14384
Long non-coding RNAs defining major subtypes of B cell precursor acute lymphoblastic leukemia. James Alva Rani,Schroeder Michael P,Neumann Martin,Bastian Lorenz,Eckert Cornelia,Gökbuget Nicola,Tanchez Jutta Ortiz,Schlee Cornelia,Isaakidis Konstandina,Schwartz Stefan,Burmeister Thomas,von Stackelberg Arend,Rieger Michael A,Göllner Stefanie,Horstman Martin,Schrappe Martin,Kirschner-Schwabe Renate,Brüggemann Monika,Müller-Tidow Carsten,Serve Hubert,Akalin Altuna,Baldus Claudia D Journal of hematology & oncology BACKGROUND:Long non-coding RNAs (lncRNAs) have emerged as a novel class of RNA due to its diverse mechanism in cancer development and progression. However, the role and expression pattern of lncRNAs in molecular subtypes of B cell acute lymphoblastic leukemia (BCP-ALL) have not yet been investigated. Here, we assess to what extent lncRNA expression and DNA methylation is driving the progression of relapsed BCP-ALL subtypes and we determine if the expression and DNA methylation profile of lncRNAs correlates with established BCP-ALL subtypes. METHODS:We performed RNA sequencing and DNA methylation (Illumina Infinium microarray) of 40 diagnosis and 42 relapse samples from 45 BCP-ALL patients in a German cohort and quantified lncRNA expression. Unsupervised clustering was applied to ascertain and confirm that the lncRNA-based classification of the BCP-ALL molecular subtypes is present in both our cohort and an independent validation cohort of 47 patients. A differential expression and differential methylation analysis was applied to determine the subtype-specific, relapse-specific, and differentially methylated lncRNAs. Potential functions of subtype-specific lncRNAs were determined by using co-expression-based analysis on nearby (cis) and distally (trans) located protein-coding genes. RESULTS:Using an integrative Bioinformatics analysis, we developed a comprehensive catalog of 1235 aberrantly dysregulated BCP-ALL subtype-specific and 942 relapse-specific lncRNAs and the methylation profile of three subtypes of BCP-ALL. The 1235 subtype-specific lncRNA signature represented a similar classification of the molecular subtypes of BCP-ALL in the independent validation cohort. We identified a strong correlation between the DUX4-specific lncRNAs and genes involved in the activation of TGF-β and Hippo signaling pathways. Similarly, Ph-like-specific lncRNAs were correlated with genes involved in the activation of PI3K-AKT, mTOR, and JAK-STAT signaling pathways. Interestingly, the relapse-specific lncRNAs correlated with the activation of metabolic and signaling pathways. Finally, we found 23 promoter methylated lncRNAs epigenetically facilitating their expression levels. CONCLUSION:Here, we describe a set of subtype-specific and relapse-specific lncRNAs from three major BCP-ALL subtypes and define their potential functions and epigenetic regulation. The subtype-specific lncRNAs are reproducible and can effectively stratify BCP-ALL subtypes. Our data uncover the diverse mechanism of action of lncRNAs in BCP-ALL subtypes defining which lncRNAs are involved in the pathogenesis of disease and are relevant for the stratification of BCP-ALL subtypes. 10.1186/s13045-018-0692-3
The regulatory ZFAS1/miR-150/ST6GAL1 crosstalk modulates sialylation of EGFR via PI3K/Akt pathway in T-cell acute lymphoblastic leukemia. Liu Qianqian,Ma Hongye,Sun Xiuhua,Liu Bing,Xiao Yang,Pan Shimeng,Zhou Huimin,Dong Weijie,Jia Li Journal of experimental & clinical cancer research : CR BACKGROUND:Noncoding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are becoming key parts in the development of multidrug resistance (MDR) in T-cell acute lymphoblastic leukemia (T-ALL). Abnormal expression in sialyated N-glycans have been observed in MDR leukemia. However, the role of sialylation regulated MDR remains poorly understood. The aim of this work is to analyze the alternation of N-glycans in T-ALL MDR. METHODS:Here, mass spectrometry (MS) is analyzed to screen the N-glycan profiles from ALL cell line CR and adriamycin (ADR)-resistant CR (CR/A) cells. The expression of sialyltransferase (ST) genes in T-ALL cell lines and bone marrow mononuclear cells (BMMCs) of T-ALL patients were analyzed using qRT-PCR. Functionally, T-ALL cell proliferation and MDR are detected through CCK8 assay, colony formation assay, western blot and flow cytometry. RIP assay and Dual-luciferase reporter gene assay confirm the binding association between ZFAS1 and miR-150. Xenograft nude mice models are used to determine the role of ST6GAL1 in vivo. RESULTS:Elevated expression of α2, 6-sialyltransferase 1 (ST6GAL1) has been detected. The altered level of ST6GAL1 was corresponding to the drug-resistant phenotype of T-ALL cell lines both in vitro and in vivo. ZFAS1/miR-150/ST6GAL1 axis was existed in T-ALL cell lines. MiR-150 was downregulated and inversely correlated to ST6GAL1 expression. ZFAS1 was a direct target of miR-150 and positively modulated ST6GAL1 level by binding miR-150. ZFAS1/miR-150/ST6GAL1 axis functioned to regulate ADR-resistant cell growth and apoptosis. Besides, EGFR was demonstrated to be a substrate of ST6GAL1, and the sialylated EGFR had an impact on the PI3K/Akt pathway. CONCLUSION:Results suggested that ZFAS1/miR-150/ST6GAL1 axis involves in the progression of T-ALL/MDR further mediates sialylated EGFR via PI3K/Akt pathway. This work might have an application against T-ALL MDR. 10.1186/s13046-019-1208-x
Long noncoding RNA LINC00265 predicts the prognosis of acute myeloid leukemia patients and functions as a promoter by activating PI3K-AKT pathway. Ma L,Kuai W-X,Sun X-Z,Lu X-C,Yuan Y-F European review for medical and pharmacological sciences OBJECTIVE:Mounting evidence suggests that long noncoding RNAs (lncRNAs) function in multiple cancers. This study aimed to determine the expression, clinical significance, and possible biological function of a novel lncRNA LINC00265 in acute myeloid leukemia (AML). PATIENTS AND METHODS:The expression levels of LINC00265 were systematically evaluated in TCGA datasets. RT-PCR was performed to examine the expression level of LINC00265 in bone marrow and serum obtained from AML patients and healthy controls. The clinical data were interpreted by x2 test, Kaplan-Meier analyses, univariate analysis, and multivariate analysis. The functional role of LINC00265 was verified using cell experiments. Western blotting was used to examine the modulatory effect of LINC00265 on AKT/PI3K pathway in AML. RESULTS:LINC00265 was significantly highly expressed in the bone marrow and serum of AML patients. High serum LINC00265 was significantly associated with FAB classification and cytogenetics. ROC analyses showed that serum LINC00265 levels were reliable in distinguishing patients with AML from normal controls. Clinical assay indicated that AML patients with higher serum LINC00265 expression suffered poorer overall survival. Functionally, overexpression of LINC00265 suppressed the capability of proliferation, migration and invasion in AML cell lines. By using Western blot, we further illustrated that LINC00265 activated PI3K/AKT signaling in AML cell lines. CONCLUSIONS:Our findings not only demonstrated that LINC00265 contributes to AML proliferation, migration and invasion via modulation of PI3K/AKT signaling, but also suggested the potential value of LINC00265 as a clinical prognostic and a diagnostic marker for AML. 10.26355/eurrev_201811_16412
Overexpression of long noncoding RNA HOXA-AS2 predicts an adverse prognosis and promotes tumorigenesis via SOX4/PI3K/AKT pathway in acute myeloid leukemia. Qu Yi,Wang Yue,Wang Pingping,Lin Na,Yan Xiaojing,Li Yan Cell biology international Long noncoding RNAs (lncRNAs) play important roles in diverse cellular processes and carcinogenesis. Homeobox A cluster antisense RNA 2 (HOXA-AS2) is a 1,048-basepairs lncRNA located between human HOXA3 and HOXA4 genes, whose overactivation was previously found to promote the proliferation and invasion of solid tumors. However, its clinical and biological roles in acute myeloid leukemia (AML) remain unclear. This study showed that HOXA-AS2 was overexpressed in AML patients. In addition, the increased HOXA-AS2 expression was correlated with higher white blood cell and bone marrow blast counts, unfavorable karyotype classification, more measurable residual disease positivity, and earlier death. There was also a tendency toward inferior survival in patients with high HOXA-AS2 expression, and HOXA-AS2 was an independent prognostic factor among the normal-karyotype AMLs. Furthermore, the results of in vitro study showed that silencing HOXA-AS2 significantly inhibited the growth of leukemic cells by inducing G1/G0-phase arrest and apoptosis. Further analysis demonstrated that silencing HOXA-AS2 suppressed the phosphorylation level of PI3K and AKT, which thereafter promoted the expression of P21 and P27. Moreover, it was suggested that the sex-determining region Y-box 4 (SOX4), which is closely involved in the PI3K/AKT pathway, might be one of the major downstream targets of HOXA-AS2. Silencing HOXA-AS2 decreased the expression of SOX4, whereas the upregulation of SOX4 partially abrogated the inhibitory effect of silencing HOXA-AS2 on leukemic cells. In conclusion, these findings suggest that HOXA-AS2 probably functions as an oncogene via SOX4/PI3K/AKT pathway and might be a useful biomarker for the prognostic prediction in AML patients, providing a potential therapeutic target for AML. 10.1002/cbin.11370
Long non‑coding RNA linc00239 promotes malignant behaviors and chemoresistance against doxorubicin partially via activation of the PI3K/Akt/mTOR pathway in acute myeloid leukaemia cells. Yang Yuting,Dai Wenshu,Sun Yingwei,Zhao Ziyi Oncology reports Long non‑coding RNAs (lncRNAs) are known to be involved in the processes of tumourigenesis and malignant behaviours in many types of cancer, including acute myeloid leukaemia (AML). Accumulating evidence has revealed that novel lncRNAs exerted critical roles in these processes. In the present study, we investigated the effects of lncRNA linc00239 (NR_026774.1), which is 662 φnucleotides (nt) in length and was found to be upregulated in AML patients, on malignant behaviours and chemosensitivity in AML cells, including KG‑1 and HL‑60. linc00239 expression was detected in KG‑1 and HL‑60 cells by quantitative PCR and northern blotting, and it was found that linc00239 is detectable by both of these assays. After knockdown or overexpression of linc00239 in AML cells, the results revealed that the presence of linc00239 promoted proliferation, colony formation and migration ability. Furthermore, the presence of linc00239 increased chemoresistance to doxorubicin in AML cells partially by preventing doxorubicin‑induced apoptotic cell death. It was also determined that the presence of linc00239 was related to activation of the phosphatidylinositol 3‑kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway. Inhibition of PI3K/Akt/mTOR using 1 µM NVP‑BEZ235 (BEZ) abolished the inhibitory effect of linc00239 on chemosensitivity and the preventative effect on doxorubicin‑induced cell death. Collectively, our data revealed that linc00239 is a novel tumour promoter in AML cells and indicated that it is a potential therapeutic target. 10.3892/or.2019.6991