加载中

    Highly Stretchable and Tough Physical Silk Fibroin-Based Double Network Hydrogels. Zhao Yu,Guan Juan,Wu Su Jun Macromolecular rapid communications Regenerated silk fibroin (RSF) is a promising biomedical material, but the poor mechanical properties of RSF hydrogels may hinder the use as structural components. Herein, an equilibrium RSF hydrogel is prepared and optimized based on the double network (DN) concept. After sufficient soaking in water and removal of small molecules, the equilibrium RSF DN hydrogels prove stable in water, strong, highly extensible, and tough with 0.26-0.44 MPa tensile strength, 500-900% elongation, and 2 MJ m work of extension. The combination of high strength and extensibility is attributed to the homogeneous morphology and the hydrophobic interactions and hydrogen bonding between the two networks. The strategy in this work overcomes the previous issue of swelling and eventual fracture of as-prepared RSF/SDS DN hydrogels in water. In addition, such mechanically superior RSF DN hydrogels also display low cytotoxicity. It concludes that the elastic and tough RSF DN hydrogels could be engineered by introducing widely used polymer networks, and the hydrogels from inexpensive, environmentally friendly, and biocompatible silk fibroin may hold great potential in biomedical applications. 10.1002/marc.201900389
    Self-Crosslinking of Silk Fibroin Using HO-Horseradish Peroxidase System and the Characteristics of the Resulting Fibroin Membranes. Zhou Buguang,Wang Ping,Cui Li,Yu Yuanyuan,Deng Chao,Wang Qiang,Fan Xuerong Applied biochemistry and biotechnology Silk fibroin has been widely used in biomedical and clinical fields owing to its good biocompatibility. In the present work, self-crosslinking of fibroin molecules was carried out using the hydrogen peroxide (HO)-horseradish peroxidase system, followed by preparation of the fibroin membranes, aiming at improving the mechanical property of fibroin-based material and expanding its applications. P-Hydroxyphenylacetamide (PHAD), as the model compound of tyrosine residues in fibroins, was used to investigate the possibility of horseradish peroxidase (HRP)-catalyzed crosslinking. The results were characterized by means of 1H NMR and UPLC-TQD. The efficacy of enzymatic crosslinking of silk fibroins was examined by determining the changes in the relative viscosity, amino acid compositions, and SEC chromatogram. The obtained data indicated that HO-HRP incubation led to PHAD polymerization, and the molecular weight of fibroin proteins was also noticeably increased after the enzymatic treatment. CD and ATR-FTIR spectra revealed that HO-HRP treatments had an evident impact on the conformational structure of silk fibroins. The mechanical property and thermal behavior for the modified fibroin membrane were noticeably improved compared to the untreated. Meanwhile, the obtained membrane exhibited good biocompatibility according to the cell growth experiment. The present work provides a novel method for preparation of the fibroin-based materials for biomedical applications. 10.1007/s12010-017-2417-4
    Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Yue Kan,Trujillo-de Santiago Grissel,Alvarez Mario Moisés,Tamayol Ali,Annabi Nasim,Khademhosseini Ali Biomaterials Gelatin methacryloyl (GelMA) hydrogels have been widely used for various biomedical applications due to their suitable biological properties and tunable physical characteristics. GelMA hydrogels closely resemble some essential properties of native extracellular matrix (ECM) due to the presence of cell-attaching and matrix metalloproteinase responsive peptide motifs, which allow cells to proliferate and spread in GelMA-based scaffolds. GelMA is also versatile from a processing perspective. It crosslinks when exposed to light irradiation to form hydrogels with tunable mechanical properties. It can also be microfabricated using different methodologies including micromolding, photomasking, bioprinting, self-assembly, and microfluidic techniques to generate constructs with controlled architectures. Hybrid hydrogel systems can also be formed by mixing GelMA with nanoparticles such as carbon nanotubes and graphene oxide, and other polymers to form networks with desired combined properties and characteristics for specific biological applications. Recent research has demonstrated the proficiency of GelMA-based hydrogels in a wide range of tissue engineering applications including engineering of bone, cartilage, cardiac, and vascular tissues, among others. Other applications of GelMA hydrogels, besides tissue engineering, include fundamental cell research, cell signaling, drug and gene delivery, and bio-sensing. 10.1016/j.biomaterials.2015.08.045
    Synthesis of silk fibroin-g-PAA composite using HO-HRP and characterization of the in situ biomimetic mineralization behavior. Zhou Buguang,He Min,Wang Ping,Fu Haitian,Yu Yuanyuan,Wang Qiang,Fan Xuerong Materials science & engineering. C, Materials for biological applications Silk fibroin (SF) as a bioactive protein can offer growth substrates for hydroxyapatite (HAp) deposition. In the current work, graft copolymerization of acrylic acid (AA) onto fibroin chains was carried out using hydrogen peroxide-horseradish peroxidase (HO-HRP) catalytic system, SF-g-polyacrylic acid (PAA) membranes was prepared subsequently, followed by in situ biomimetic mineralization in the Ca/P solutions, aiming at promoting the deposition of HAp and endowing the fibroin-based biocomposite with enhanced bioactivity. Meanwhile, p-hydroxyphenylacetamide (PHAD) and methyl acrylate (MA), as the model compounds of tyrosine residues in SF and vinyl monomer were used to disclose the mechanism of graft copolymerization. The data from FTIR and SEC chromatograms indicated that vinyl monomer was successfully graft copolymerized with SF during HO-HRP treatment. According to the results of XRD, SEM patterns and EDS-Mapping, mineral phases on the surfaces of SF-g-PAA membranes were detected after different cycles of biomimetic mineralization, and the mechanical property of SF-g-PAA/HAp membrane was noticeably improved. Cell viability and adhesion assays revealed that the composite of SF-g-PAA/HAp exhibited acceptable biocompatibility and outstanding adhesion property. The present work provides a novel method for preparation of the fibroin-based biomaterial for bone tissue engineering. 10.1016/j.msec.2017.08.006
    Effects of silk fibroin in murine dry eye. Kim Chae Eun,Lee Ji Hyun,Yeon Yeung Kyu,Park Chan Hum,Yang JaeWook Scientific reports The study aimed to investigate the effects of silk fibroin in a mouse model of dry eye. The experimental dry eye mouse model was developed using more than twelve-weeks-old NOD.B10.H2 mice exposing them to 30-40% ambient humidity and injecting them with scopolamine hydrobromide for 10 days. Tear production and corneal irregularity score were measured by the instillation of phosphate buffered saline or silk fibroin. Corneal detachment and conjunctival goblet cell density were observed by hematoxylin and eosin or periodic acid Schiff staining in the cornea or conjunctiva. The expression of inflammatory markers was detected by immunohistochemistry in the lacrimal gland. The silk group tear production was increased, and corneal smoothness was improved. The corneal epithelial cells and conjunctival goblet cells were recovered in the silk groups. The expression of inflammatory factors was inhibited in the lacrimal gland of the silk group. These results show that silk fibroin improved the cornea, conjunctiva, and lacrimal gland in the mouse model of dry eye. These findings suggest that silk fibroin has anti-inflammatory effects in the experimental models of dry eye. 10.1038/srep44364