logo logo
RNA-seq-based evaluation of bicolor tepal pigmentation in Asiatic hybrid lilies (Lilium spp.). BMC genomics BACKGROUND:Color patterns in angiosperm flowers are produced by spatially and temporally restricted deposition of pigments. Identifying the mechanisms responsible for restricted pigment deposition is a topic of broad interest. Some dicots species develop bicolor petals, which are often caused by the post-transcriptional gene silencing (PTGS) of chalcone synthase (CHS) genes. An Asiatic hybrid lily (Lilium spp.) cultivar Lollypop develops bicolor tepals with pigmented tips and white bases. Here, we analyzed the global transcription of pigmented and non-pigmented tepal parts from Lollypop, to determine the main transcriptomic differences. RESULTS:De novo assembly of RNA-seq data yielded 49,239 contigs (39,426 unigenes), which included a variety of novel transcripts, such as those involved in flavonoid-glycosylation and sequestration and in regulation of anthocyanin biosynthesis. Additionally, 1258 of the unigenes exhibited significantly differential expression between the tepal parts (false discovery rates <0.05). The pigmented tepal parts accumulated more anthocyanins, and unigenes annotated as anthocyanin biosynthesis genes (e.g., CHS, dihydroflavonol 4-reductase, and anthocyanidin synthase) were expressed 7-30-fold higher than those in non-pigmented parts. These results indicate that the transcriptional regulation of biosynthesis genes is more likely involved in the development of bicolor lily tepals rather than the PTGS of CHS genes. In addition, the expression level of a unigene homologous to LhMYB12, which often regulates full-tepal anthocyanin pigmentation in lilies, was >2-fold higher in the pigmented parts. Thus, LhMYB12 should be involved in the transcriptional regulation of the biosynthesis genes in bicolor tepals. Other factors that potentially suppress or enhance the expression of anthocyanin biosynthesis genes, including a WD40 gene, were identified, and their involvement in bicolor development is discussed. CONCLUSIONS:Our results indicate that the bicolor trait of Lollypop tepals is caused by the transcriptional regulation of anthocyanin biosynthesis genes and that the transcription profile of LhMYB12 provides a clue for elucidating the mechanisms of the trait. The tepal transcriptome constructed in this study will accelerate investigations of the genetic controls of anthocyanin color patterns, including the bicolor patterns, of Lilium spp. 10.1186/s12864-016-2995-5
Repression of anthocyanin biosynthesis by R3-MYB transcription factors in lily (Lilium spp.). Plant cell reports KEY MESSAGE:Lily R3-MYB transcription factors are involved in negative regulation to limit anthocyanin accumulation in lily flowers and leaves and create notable color patterns on ectopically expressed petunia flowers. In eudicots, both positive and negative regulators act to precisely regulate the level of anthocyanin accumulation. The R3-MYB transcription factor is among the main factors repressing anthocyanin biosynthesis. Although, in monocots, the positive regulators have been well characterized, the negative regulators have not been examined. Two R3-MYBs, LhR3MYB1 and LhR3MYB2, which were identified in lily transcriptomes, were characterized in this study to understand the regulatory mechanisms of anthocyanin biosynthesis. LhR3MYB1 and LhR3MYB2 had a C2 suppressor motif downstream of a single MYB repeat; the similar amino acid motif appears only in AtMYBL2 among the eudicot R3-MYB proteins. Stable and transient overexpression of LhR3MYB1 and LhR3MYB2 in tobacco plants showed suppression of anthocyanin biosynthesis by both; however, suppression by LhR3MYB2 was stronger than that by LhR3MYB1. In the lily plant, the LhR3MYB2 transcript was detected in leaves with light stimulus-induced anthocyanin accumulation and in pink tepals. Although LhR3MYB1 was expressed in some, but not all tepals, its expression was not linked to anthocyanin accumulation. In addition, LhR3MYB1 expression levels in the leaves remained unchanged by the light stimulus, and LhR3MYB1 transcripts predominantly accumulated in the ovaries, which did not accumulate anthocyanins. Thus, although LhR3MYB1 and LhR3MYB2 have an ability to repress anthocyanin accumulation, LhR3MYB2 is more strongly involved in the negative regulation to limit the accumulation than that by LhR3MYB1. In addition, the overexpression of LhR3MYB2 generated notable color patterns in petunia flowers; thus, the usefulness of the LhR3MYB genes for creating unique color patterns by genetic engineering is discussed. 10.1007/s00299-019-02391-4
First Report of Phytophthora ramorum Causing a Leafspot on Loropetalum chinense, Chinese Fringe Flower in California. Blomquist C L,Rooney-Latham S,Soriano M C,McCarty J C Plant disease Chinese fringe flower is a popular landscape plant in California for its red evergreen foliage and its showy red flowers in the spring. In April 2007, a sample was submitted to the California Department of Food and Agriculture diagnostic laboratory from Sacramento County as part of an inspection of a nursery for Phytophthora ramorum. A sample was taken from Loropetalum chinense because the inspector noticed very small spots and defoliation in the crop, even though P. ramorum was not detected in previous samples sent to the lab with similar symptoms. Six 5-mm pieces of the leaves were placed on CMA-PARP (1) medium as part of our standard nursery screening, even though no lesions were seen. An organism with coralloid coenocytic hyphae, chlamydospores, and ellipsoidal semi-papillate sporangia matching the description of P. ramorum (2) grew into a snowflake-shaped colony from two pieces. On closer inspection of the leaves, small green lesions of approximately 3 to 5 mm wide were visible, especially when the leaves were backlit. For sporangial production, a 6-mm plug was transferred from the colony margin of the isolate onto V8 juice agar (V8). Sporangia, produced on V8 plugs incubated in dH0 for 2 days, were from 41 to 61 × 23 to 32 μm (48.7 × 29.3 μm average) with a length to breadth ratio from 1.3 to 2.0 (average 1.7). Chlamydospores on CMA-PARP were 36.7 to 60.1 μm (49.1 μm diameter average). From 2008 to 2011, similar symptoms were found on L. chinense from Contra Costa, San Joaquin, and Los Angeles Counties. The same organism was isolated from these infected plants. To confirm pathogenicity on L. chinense, five nursery-grown plants in 3.78-L pots were inoculated with three isolates each. Plants were inoculated with 6-mm plugs taken from the margin of a 7- to 10-day old culture grown on V8. Plant leaves were wounded with a sterile pushpin and two colonized plugs were covered with a freezer tube cap filled with sterile dHO and attached to the underside of the leaves with a sterile pin-curl clip (4). Inoculated plants were sprayed with water, covered with plastic bags, and incubated for 2 days, when bags and plugs were removed. Four leaves per isolate were inoculated on each plant and four leaves per plant were treated similarly with uncolonized V8 plugs as a control. Plants were incubated for 12 to 14 days at 18°C (16-h photoperiod) when lesions were visible and some of the leaves began to abscise. P. ramorum grew from each lesion produced on inoculated leaves and no Phytophthora spp. grew from the control leaves when isolated onto CMA-PARP. Inoculations were repeated with similar results. The internal transcribed spacer region (ITS) of rDNA was amplified and sequenced from the isolates using ITS1 and ITS4 primers as described by White et al. (3). BLAST analysis of the sequenced amplicons (GenBank JQ361743 through JQ361745) showed 100% identity with the ITS sequence of P. ramorum (GenBank AY594198). P. ramorum is a quarantine pathogen with many hosts (2,4). Leaf spots on L. chinense caused by P. ramorum are inconspicuous and missing this disease during nursery inspections could lead to unintended spread to neighboring host plants. References: (1) S. N. Jeffers and S. B. Martin. Plant Dis. 70:1038, 1986. (2) S. Werres et al. Mycol. Res. 105:1155, 2001. (3) T. J. White et al. Page 315 in: PCR Protocols. A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990. (4) L. E. Yakabe et al. Plant Dis. 93:883, 2009. 10.1094/PDIS-01-12-0062-PDN
Genetics and epigenetics in flower pigmentation associated with transposable elements in morning glories. Iida Shigeru,Morita Yasumasa,Choi Jeong-Doo,Park Kyeung-Il,Hoshino Atsushi Advances in biophysics Among the genus Ipomoea, three morning glories, I. nil the Japanese morning glory), I. purpurea (the common morning glory), and I. tricolor, were domesticated well for floricultural plants, and many spontaneous mutants displaying various flower pigmentation patterns were isolated. Most of these spontaneous mutations were found to be caused by the insertion of DNA transposable elements in the genes for the anthocyanin pigmentation in flowers, and many of them exhibited variegated flowers, such as white flowers with pigmented spots and sectors. Here, we describe the historical background of the mutants displaying variegated flowers and review the genetic and epigenetic regulation in flower pigmentation associated with transposable elements of these morning glories. The flecked, speckled, r-1, and purple mutations in I. nil were caused by insertions of Tpnl and its relatives in the En/Spm superfamily, Tpn2, Tpn3, and Tpn4, into the genes for anthocyanin coloration in flowers,i.e., DFR-B, CHI, CHS-D, and InNHXI, respectively. Similarly, the flaked and pink mutants of I. purpurea have distantly related elements, Tip100 and Tip201, in the Ac/Ds superfamily inserted into the CHS-D and F3'H genes, respectively. The flower variegation patterns can be determined by the frequency and timing of the excision of these transposons, and their stable insertions produce plain color flowers without generating pigmented spots or sectors; furthermore, both genetic and epigenetic regulation appeared to play important roles in determining the frequency and timing of the excision of the transposons. However, flower variegation is not always associated with the excision of an integrated DNA transposon from one of the genes for anthocyanin pigmentation. The mutant Flying Saucers of I. tricolor displaying variegated flowers was found to have the transposon ItMULE inserted into the DFR-B promoter region, but no excision of ITMULEL from the DFR-B could be detected in the variegated flower lines. The instable pearly-vrg allele in cv. Flying Saucers is likely to be an epiallele because the DNA methylation in the DFR-B promoter appeared to be associated with flower pigmentation.
Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp. Plant physiology Orchidaceae are well known for their fascinating floral morphologic features, specialized pollination, and distinctive ecological strategies. With their long-lasting flowers of various colors and pigmentation patterning, Phalaenopsis spp. have become important ornamental plants worldwide. In this study, we identified three R2R3-MYB transcription factors PeMYB2, PeMYB11, and PeMYB12. Their expression profiles were concomitant with red color formation in Phalaenopsis spp. flowers. Transient assay of overexpression of three PeMYBs verified that PeMYB2 resulted in anthocyanin accumulation, and these PeMYBs could activate the expression of three downstream structural genes Phalaenopsis spp. Flavanone 3-hydroxylase5, Phalaenopsis spp. Dihydroflavonol 4-reductase1, and Phalaenopsis spp. Anthocyanidin synthase3. In addition, these three PeMYBs participated in the distinct pigmentation patterning in a single flower, which was revealed by virus-induced gene silencing. In the sepals/petals, silencing of PeMYB2, PeMYB11, and PeMYB12 resulted in the loss of the full-red pigmentation, red spots, and venation patterns, respectively. Moreover, different pigmentation patterning was regulated by PeMYBs in the sepals/petals and lip. PeMYB11 was responsive to the red spots in the callus of the lip, and PeMYB12 participated in the full pigmentation in the central lobe of the lip. The differential pigmentation patterning was validated by RNA in situ hybridization. Additional assessment was performed in six Phalaenopsis spp. cultivars with different color patterns. The combined expression of these three PeMYBs in different ratios leads to a wealth of complicated floral pigmentation patterning in Phalaenopsis spp. 10.1104/pp.114.254599
A Retrotransposon Insertion in the Promoter Causes Harlequin/Black Flowers in Orchids. Plant physiology The harlequin/black flowers in orchids contain dark purple spots and various pigmentation patterns, which appeared as a new color in 1996. We analyzed this phenotype by microscopy, HPLC, gene functional characterization, genome structure analysis, and transient overexpression system to obtain a better understanding of the black color formation in orchids. Most mesophyll cells of harlequin flowers showed extremely high accumulation of anthocyanins as well as a high expression of MYB11 () as the major regulatory R2R3-MYB transcription factor for regulating the production of the black color. In addition, we analyzed the expression of basic helix-loop-helix factors, WD40 repeat proteins, and - and -like repressors for their association with the spot pattern formation. To understand the high expression of in harlequin flowers, we isolated the promoter sequences of from red and harlequin flowers. A retrotransposon, named (), was identified and inserted in the upstream regulatory region of The insertion resulted in strong expression of and thus extremely high accumulation of anthocyanins in the harlequin flowers of the Yushan Little Pearl variety. A dual luciferase assay showed that the insertion of enhanced expression by at least 2-fold compared with plants not carrying the insertion. Furthermore, the presence of explains the high mutation rates resulting in many variations of pigmentation patterning in harlequin flowers of orchids. 10.1104/pp.19.00205
The novel allele of the LhMYB12 gene is involved in splatter-type spot formation on the flower tepals of Asiatic hybrid lilies (Lilium spp.). The New phytologist Many angiosperm families develop spatially regulated anthocyanin spots on their flowers. The Asiatic hybrid lily (Lilium spp.) cv 'Latvia' develops splatter-type spots on its tepals. The splatters arise simply from the deposition of anthocyanin pigments in the tepal epidermis. To determine how splatter development was regulated, we analysed the transcription of anthocyanin biosynthesis genes, and isolated and characterized an R2R3-MYB gene specific to splatter pigmentation. All anthocyanin biosynthesis genes were expressed in splatter-containing regions of tepals, but not in other regions, indicating that splatter pigmentation is caused by the transcriptional regulation of biosynthesis genes. Previously characterized LhMYB12 regulators were not involved in splatter pigmentation, but, instead, a new allele of the LhMYB12 gene, LhMYB12-Lat, isolated in this study, contributed to splatter development. In 'Latvia' and other lily plants expressing splatters, LhMYB12-Lat was preferentially transcribed in the splatter-containing region of tepals. Progeny segregation analysis showed that LhMYB12-Lat genotype and splatter phenotype were co-segregated among the F1 population, indicating that LhMYB12-Lat determines the presence or absence of splatters. LhMYB12-Lat contributes to splatter development, but not to full-tepal pigmentation and raised spot pigmentation. As a result of its unique sequences and different transcription profiles, this new allele of LhMYB12 should be a novel R2R3-MYB specifically associating with splatter spot development. 10.1111/nph.12572
Tissue culture-induced flower-color changes in Saintpaulia caused by excision of the transposon inserted in the flavonoid 3', 5' hydroxylase (F3'5'H) promoter. Sato Mitsuru,Kawabe Takashi,Hosokawa Munetaka,Tatsuzawa Fumi,Doi Motoaki Plant cell reports The variegated Saintpaulia cultivar Thamires (Saintpaulia sp.), which has pink petals with blue splotches, is generally maintained by leaf cuttings. In contrast, tissue culture-derived progeny of the cultivar showed not only a high percentage of mutants with solid-blue petals but also other solid-color variants, which have not been observed from leaf cuttings. Solid-color phenotypes were inherited stably by their progeny from tissue culture. Petals from each solid-color variant were analyzed by high-performance liquid chromatography and shown to contain different proportions of three main anthocyanin derivatives: malvidin, peonidin, and pelargonidin. Analysis of flavonoid 3', 5'-hydroxylase (F3'5'H) sequences showed no differences in the coding region among the variants and variegated individuals. However, a transposon belonging to the hAT superfamily was found in the promoter region of variegated individuals, and the presence of transposon-related insertions or deletions correlated with the observed flower-color phenotypes. Solid-blue flower mutants contained 8-base pair (bp) insertions (transposon excision footprints), while solid-pink mutants had 58- to 70-bp insertions, and purple- and deep-purple mutants had 21- and 24-bp deletions, respectively. Real-time reverse transcription polymerase chain reaction (RT-PCR) analysis showed that F3'5'H expression levels correlated with insertions and deletions (indels) caused by hAT excision, resulting in flower-color differences. Our results showed that tissue culture of Saintpaulia 'Thamires' elicits transposon excision, which in turn alters F3'5'H expression levels and flower colors. 10.1007/s00299-011-1016-z
Transposon-mediated mutation of CYP76AD3 affects betalain synthesis and produces variegated flowers in four o'clock (Mirabilis jalapa). Suzuki Mariko,Miyahara Taira,Tokumoto Hiroko,Hakamatsuka Takashi,Goda Yukihiro,Ozeki Yoshihiro,Sasaki Nobuhiro Journal of plant physiology The variegated flower colors of many plant species have been shown to result from the insertion or excision of transposable elements into genes that encode enzymes involved in anthocyanin synthesis. To date, however, it has not been established whether this phenomenon is responsible for the variegation produced by other pigments such as betalains. During betalain synthesis in red beet, the enzyme CYP76AD1 catalyzes the conversion of L-dihydroxyphenylalanine (DOPA) to cyclo-DOPA. RNA sequencing (RNA-seq) analysis indicated that the homologous gene in four o'clock (Mirabilis jalapa) is CYP76AD3. Here, we show that in four o'clock with red perianths, the CYP76AD3 gene consists of one intron and two exons; however, in a mutant with a perianth showing red variegation on a yellow background, a transposable element, dTmj1, had been excised from the intron. This is the first report that a transposition event affecting a gene encoding an enzyme for betalain synthesis can result in a variegated flower phenotype. 10.1016/j.jplph.2014.07.010
Precise spatio-temporal regulation of the anthocyanin biosynthetic pathway leads to petal spot formation in Clarkia gracilis (Onagraceae). The New phytologist Petal spots are widespread in angiosperms and are often implicated in pollinator attraction. Clarkia gracilis petals each have a single red-purple spot that contrasts against a pink background. The position and presence of spots in C. gracilis are determined by the epistatic interaction of alleles at two as yet unidentified loci. We used HPLC to identify the different pigments produced in the petals, and qualitative and quantitative RT-PCR to assay for spatio-temporal patterns of expression of different anthocyanin pathway genes. We found that spots contain different pigments from the remainder of the petal, being composed of cyanidin/peonidin-based, instead of malvidin-based anthocyanins. Expression assays of anthocyanin pathway genes showed that the dihydroflavonol-4-reductase 2 (Dfr2) gene has a spot-specific expression pattern and acts as a switch for spot production. Co-segregation analyses implicated the gene products of the P and I loci as trans-regulators of this switch. Spot pigments appear earlier in development as a result of early expression of Dfr2 and the flavonoid 3' hydroxylase 1 (F3'h1) gene. Pigments in the background appear later, as a result of later expression of Dfr1 and the flavonoid 3'-5' hydroxylase 1 (F3'5'h1) genes. The evolution of this spot production mechanism appears to have been facilitated by duplication of the Dfr gene and to have required substantial reworking of the anthocyanin pathway regulatory network. 10.1111/nph.12062
All the Colors of the Rainbow: Diversification of Flower Color and Intraspecific Color Variation in the Genus . Frontiers in plant science Floral color plays a key role as visual signaling and is therefore of great importance in shaping plant-pollinator interactions. (), a genus comprising over 300 species and named after the Greek goddess of the colorful rainbow, is famous for its dazzling palette of flower colors and patterns, which vary considerably both within and among species. Despite the large variation of flower color in , little is known about the phylogenetic and ecological contexts of floral color. Here, we seek to resolve the evolution of flower color in the genus in a macroevolutionary framework. We used a phylogenetic analysis to reconstruct the ancestral state of flower color and other pollination-related traits (e.g., the presence of nectar and mating system), and also tracked the evolution of color variation. We further explored weather floral trait transitions are better explained by environmental or pollinator-mediated selection. Our study revealed that the most recent common ancestor likely had monomorphic, purple flowers, with a crest and a spot on the fall. The flowers were likely insect-pollinated, nectar-rewarding, and self-compatible. The diversity of floral traits we see in modern irises, likely represents a trade-off between conflicting selection pressures. Whether shifts in these flower traits result from abiotic or biotic selective agents or are maintained by neutral processes without any selection remains an open question. Our analysis serves as a starting point for future work exploring the genetic and physiological mechanisms controlling flower coloration in the most color-diverse genus . 10.3389/fpls.2020.569811
Formation and Shaping of the Antirrhinum Flower through Modulation of the CUP Boundary Gene. Rebocho Alexandra B,Kennaway J Richard,Bangham J Andrew,Coen Enrico Current biology : CB Boundary domain genes, expressed within or around organ primordia, play a key role in the formation, shaping, and subdivision of planar plant organs, such as leaves. However, the role of boundary genes in formation of more elaborate 3D structures, which also derive from organ primordia, remains unclear. Here we analyze the role of the boundary domain gene CUPULIFORMIS (CUP) in formation of the ornate Antirrhinum flower shape. We show that CUP expression becomes cleared from boundary subdomains between petal primordia, most likely contributing to formation of congenitally fused petals (sympetally) and modulation of growth at sinuses. At later stages, CUP is activated by dorsoventral genes in an intermediary region of the corolla. In contrast to its role at organ boundaries, intermediary CUP activity leads to growth promotion rather than repression and formation of the palate, lip, and characteristic folds of the closed Antirrhinum flower. Intermediary expression of CUP homologs is also observed in related sympetalous species, Linaria and Mimulus, suggesting that changes in boundary gene activity have played a key role in the development and evolution of diverse 3D plant shapes. 10.1016/j.cub.2017.07.064
The gene encoding flavanone 3-hydroxylase is expressed normally in the pale yellow flowers of the Japanese morning glory carrying the speckled mutation which produce neither flavonol nor anthocyanin but accumulate chalcone, aurone and flavanone. Hoshino A,Abe Y,Saito N,Inagaki Y,Iida S Plant & cell physiology The Japanese morning glory carrying the recessive mutable speckled allele with the dominant speckled-activator bears colorless flowers with fine and round colored spots distributed over the corolla whereas the plant without the speckled-activator produces pale yellow flowers. Previous chemical analysis has indicated that a mutation in the gene for flavanone 3-hydroxylase (F3H) is a likely candidate for the speckled allele. However, the F3H mRNA without sequence alteration accumulates normally in the pale yellow flowers, indicating that the speckled allele is neither the F3H gene nor a regulatory gene acting on the F3H gene expression. 10.1093/oxfordjournals.pcp.a029260
An intragenic tandem duplication in a transcriptional regulatory gene for anthocyanin biosynthesis confers pale-colored flowers and seeds with fine spots in Ipomoea tricolor. Park Kyeung-Il,Choi Jeong-Doo,Hoshino Atsushi,Morita Yasumasa,Iida Shigeru The Plant journal : for cell and molecular biology While the wild-type morning glory (Ipomoea tricolor) displays bright-blue flowers and dark-brown seeds, its spontaneous mutant, Blue Star, carrying the mutable ivory seed-variegated (ivs-v) allele, exhibits pale-blue flowers with a few fine blue spots and ivory seeds with tiny dark-brown spots. The mutable allele is caused by an intragenic tandem duplication of 3.3 kbp within a gene for transcriptional activator containing a basic helix-loop-helix (bHLH) DNA-binding motif. Each of the tandem repeats is flanked by a 3-bp sequence AAT, indicating that the 3-bp microhomology is used to generate the tandem duplication. The transcripts in the pale-blue flower buds of the mutant contain an internal 583-bp tandem duplication that results in the production of a truncated polypeptide lacking the bHLH domain. The mRNA accumulation of most of the structural genes encoding enzymes for anthocyanin biosynthesis in the flower buds of the mutant was significantly reduced. The transcripts identical to the wild-type mRNAs for the transcriptional activator were present abundantly in blue spots of the variegated flowers, whereas the transcripts containing the 583-bp tandem duplication were predominant in the pale-blue background of the same flowers. The flower and seed variegations studied here are likely to be caused by somatic homologous recombination between an intragenic tandem duplication in the gene encoding a bHLH transcriptional activator for anthocyanin biosynthesis, whereas various flower variegations are reported to be caused by excision of DNA transposons inserted into pigmentation genes. 10.1111/j.1365-313X.2004.02098.x
Two R2R3-MYB genes, homologs of Petunia AN2, regulate anthocyanin biosyntheses in flower Tepals, tepal spots and leaves of asiatic hybrid lily. Yamagishi Masumi,Shimoyamada Yoshihiro,Nakatsuka Takashi,Masuda Kiyoshi Plant & cell physiology Anthocyanins are secondary metabolites that contribute to colors of flowers, fruits and leaves. Asiatic hybrid lily (Lilium spp.) accumulates cyanidin anthocyanins in flower tepals, tepal spots and leaves of juvenile shoots. To clarify their mechanisms of regulation of anthocyanin pigmentation, two full-length cDNAs of R2R3-MYB (LhMYB6 and LhMYB12) were isolated from the anthocyanin-accumulating tepals of cultivar 'Montreux'. Analysis of the deduced amino acid sequences indicated they have homology with petunia AN2, homologous sequences of which had not been isolated in species of monocots. Yeast two-hybrid analysis showed that LhMYB6 and LhMYB12 interacted with the Lilium hybrid basic helix-loop-helix 2 (LhbHLH2) protein. Transient expression analysis indicated that co-expression of LhMYB6 and LhbHLH2 or LhMYB12 and LhbHLH2, introduced by a microprojectile, activated the transcription of anthocyanin biosynthesis genes in lily bulbscales. Spatial and temporal transcription of LhMYB6 and LhMYB12 was analyzed. The expression of LhMYB12 corresponded well with anthocyanin pigmentation in tepals, filaments and styles, and that of LhMYB6 correlated with anthocyanin spots in tepals and light-induced pigmentation in leaves. These results indicate that LhMYB6 and LhMYB12 positively regulate anthocyanin biosynthesis and determine organ- and tissue-specific accumulation of anthocyanin. 10.1093/pcp/pcq011
A novel R2R3-MYB from grape hyacinth, MaMybA, which is different from MaAN2, confers intense and magenta anthocyanin pigmentation in tobacco. BMC plant biology BACKGROUND:The primary pigments in flowers are anthocyanins, the biosynthesis of which is mainly regulated by R2R3-MYBs. Muscari armeniacum is an ornamental garden plant with deep cobalt blue flowers containing delphinidin-based anthocyanins. An anthocyanin-related R2R3-MYB MaAN2 has previously been identified in M. armeniacum flowers; here, we also characterized a novel R2R3-MYB MaMybA, to determine its function and highlight similarities and differences between MaMybA and MaAN2. RESULTS:In this study, a novel anthocyanin-related R2R3-MYB gene was isolated from M. armeniacum flowers and functionally identified. A sequence alignment showed that MaMybA contained motifs typically conserved with MaAN2 and its orthologs. However, the shared identity of the entire amino acid sequence between MaMybA and MaAN2 was 43.5%. Phylogenetic analysis showed that they were both clustered into the AN2 subgroup of the R2R3-MYB family, but not in the same branch. We also identified a IIIf bHLH protein, MabHLH1, in M. armeniacum flowers. A bimolecular fluorescence complementation assay showed that MabHLH1 interacted with MaMybA or MaAN2 in vivo; a dual luciferase assay indicated that MaMybA alone or in interaction with MabHLH1 could regulate the expression of MaDFR and AtDFR, but MaAN2 required MabHLH1 to do so. When overexpressing MaMybA in Nicotiana tabacum 'NC89', the leaves, petals, anthers, and calyx of transgenic tobacco showed intense and magenta anthocyanin pigments, whereas those of OE-MaAN2 plants had lighter pigmentation. However, the ovary wall and seed skin of OE-MaMybA tobacco were barely pigmented, while those of OE-MaAN2 tobacco were reddish-purple. Moreover, overexpressing MaMybA in tobacco obviously improved anthocyanin pigmentation, compared to the OE-MaAN2 and control plants, by largely upregulating anthocyanin biosynthetic and endogenous bHLH genes. Notably, the increased transcription of NtF3'5'H in OE-MaMybA tobacco might lead to additional accumulation of delphinidin 3-rutinoside, which was barely detected in OE-MaAN2 and control plants. We concluded that the high concentration of anthocyanin and the newly produced Dp3R caused the darker color of OE-MaMybA compared to OE-MaAN2 tobacco. CONCLUSION:The newly identified R2R3-MYB transcription factor MaMybA functions in anthocyanin biosynthesis, but has some differences from MaAN2; MaMybA could also be useful in modifying flower color in ornamental plants. 10.1186/s12870-019-1999-0
Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Albert Nick W,Lewis David H,Zhang Huaibi,Schwinn Kathy E,Jameson Paula E,Davies Kevin M The Plant journal : for cell and molecular biology We present an investigation of anthocyanin regulation over the entire petunia plant, determining the mechanisms governing complex floral pigmentation patterning and environmentally induced vegetative anthocyanin synthesis. DEEP PURPLE (DPL) and PURPLE HAZE (PHZ) encode members of the R2R3-MYB transcription factor family that regulate anthocyanin synthesis in petunia, and control anthocyanin production in vegetative tissues and contribute to floral pigmentation. In addition to these two MYB factors, the basic helix-loop-helix (bHLH) factor ANTHOCYANIN1 (AN1) and WD-repeat protein AN11, are also essential for vegetative pigmentation. The induction of anthocyanins in vegetative tissues by high light was tightly correlated to the induction of transcripts for PHZ and AN1. Interestingly, transcripts for PhMYB27, a putative R2R3-MYB active repressor, were highly expressed during non-inductive shade conditions and repressed during high light. The competitive inhibitor PhMYBx (R3-MYB) was expressed under high light, which may provide feedback repression. In floral tissues DPL regulates vein-associated anthocyanin pigmentation in the flower tube, while PHZ determines light-induced anthocyanin accumulation on exposed petal surfaces (bud-blush). A model is presented suggesting how complex floral and vegetative pigmentation patterns are derived in petunia in terms of MYB, bHLH and WDR co-regulators. 10.1111/j.1365-313X.2010.04465.x
Transcriptional control of floral anthocyanin pigmentation in monkeyflowers (Mimulus). The New phytologist A molecular description of the control of floral pigmentation in a multi-species group displaying various flower color patterns is of great interest for understanding the molecular bases of phenotypic diversification and pollinator-mediated speciation. Through transcriptome profiling, mutant analyses and transgenic experiments, we aim to establish a 'baseline' floral anthocyanin regulation model in Mimulus lewisii and to examine the different ways of tinkering with this model in generating the diversity of floral anthocyanin patterns in other Mimulus species. We find one WD40 and one bHLH gene controlling anthocyanin pigmentation in the entire corolla of M. lewisii and two R2R3-MYB genes, PELAN and NEGAN, controlling anthocyanin production in the petal lobe and nectar guide, respectively. The autoregulation of NEGAN might be a critical property to generate anthocyanin spots. Independent losses of PELAN expression (via different mechanisms) explain two natural yellow-flowered populations of M. cardinalis (typically red-flowered). The NEGAN ortholog is the only anthocyanin-activating MYB expressed in the M. guttatus flowers. The mutant lines and transgenic tools available for M. lewisii will enable gene-by-gene replacement experiments to dissect the genetic and developmental bases of more complex floral color patterns, and to test hypotheses on phenotypic evolution in general. 10.1111/nph.12968
Comparative proteomic analysis of floral color variegation in peach. Zhou Yong,Wu Xinxin,Zhang Zhen,Gao Zhihong Biochemical and biophysical research communications Variegation in flower is a special trait in ornamental peach (Prunus persica L.). To investigate the mechanism of color variegation, we used a combination of two dimensional gel electrophoresis and mass spectrometry to explore the proteomic profiles between variegated flower (VF) and red flower (RF) buds of the peach cultivar 'Sahong Tao'. More than 500 highly reproducible protein spots (P < 0.05) were detected and 72 protein spots showed a greater than two-fold difference in their values. We identified 70 proteins that may play roles in petal coloration. The mRNA levels of the corresponding genes were detected using quantitative RT-PCR. The results show that most of the proteins are involved in energy and metabolism, which provide energy and substrates. We found that LDOX, WD40, ACC, and PPO II are related to the pigment biosynthetic pathway. The activity of PPO enzyme was further validated and showed the higher with significant differences in RF compared with the VF ones. Moreover, the four UCH proteins are involved in protein fate and may be important in post-translational modifications in peach flowers. Our study is the first comparative proteomic analysis of floral variegation and will contribute to further investigations into the molecular mechanism of flower petal coloration in ornamental peach. 10.1016/j.bbrc.2015.07.084
Peace, a MYB-like transcription factor, regulates petal pigmentation in flowering peach 'Genpei' bearing variegated and fully pigmented flowers. Uematsu Chiyomi,Katayama Hironori,Makino Izumi,Inagaki Azusa,Arakawa Osamu,Martin Cathie Journal of experimental botany Flowering peach Prunus persica cv. Genpei bears pink and variegated flowers on a single tree. The structural genes involved in anthocyanin biosynthesis were expressed strongly in pink petals but only very weakly or not at all in variegated petals. A cDNA clone encoding a MYB-like gene, isolated from pink petals was strongly expressed only in pink petals. Introduction of this gene, via biolistics gave magenta spots in the white areas of variegated petals, therefore this gene was named as Peace (peach anthocyanin colour enhancement). Differences in Peace expression determine the pattern of flower colouration in flowering peach. The R2R3 DNA-binding domain of Peace is similar to those of other plant MYBs regulating anthocyanin biosynthesis. Key amino acids for tertiary structure and the motif for interaction with bHLH proteins were conserved in Peace. Phylogenetic analysis indicates that Peace is closely related to AtMYB123 (TT2), which regulates proanthocyanidin biosynthesis in Arabidopsis, and to anthocyanin regulators in monocots rather than to regulators in dicots. This is the first report that a TT2-like R2R3 MYB has been shown to regulate anthocyanin biosynthesis. 10.1093/jxb/ert456
How petals change their spots: cis-regulatory re-wiring in Clarkia (Onagraceae). Martins Talline R,Jiang Peng,Rausher Mark D The New phytologist A long-standing question in evolutionary developmental biology is how new traits evolve. Although most floral pigmentation studies have focused on how pigment intensity and composition diversify, few, if any, have explored how a pattern element can shift position. In the present study, we examine the genetic changes underlying shifts in the position of petal spots in Clarkia. Comparative transcriptome analyses were used to identify potential candidate genes responsible for spot formation. Co-segregation analyses in F individuals segregating for different spot positions, quantitative PCR, and pyrosequencing, were used to confirm the role of the candidate gene in determining spot position. Transient expression assays were used to identify the expression domain of different alleles. An R2R3Myb transcription factor (CgMyb1) activated spot formation, and different alleles of CgMyb1 were expressed in different domains, leading to spot formation in different petal locations. Reporter assays revealed that promoters from different alleles determine different locations of expression. The evolutionary shift in spot position is due to one or more cis-regulatory changes in the promoter of CgMyb1, indicating that shifts in pattern element position can be caused by changes in a single gene, and that cis-regulatory rewiring can be used to alter the relative position of an existing character. 10.1111/nph.14163
Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes. Frontiers in plant science The pigmented cells in defined region of a petal constitute the petal spots. Petal spots attract pollinators and are found in many angiosperm families. Several cultivars of tree peony contain a single red or purple spot at the base of petal that makes the flower more attractive for the ornamental market. So far, the understanding of the molecular mechanism of spot formation is inadequate. In this study, we sequenced the transcriptome of the purple spot and the white non-spot of tree peony flower. We assembled and annotated 67,892 unigenes. Comparative analyses of the two transcriptomes showed 1,573 differentially expressed genes, among which 933 were up-regulated, and 640 were down-regulated in the purple spot. Subsequently, we examined four anthocyanin structural genes, including PsCHS, PsF3'H, PsDFR, and PsANS, which expressed at a significantly higher level in the purple spot than in the white non-spot. We further validated the digital expression data using quantitative real-time PCR. Our result uncovered transcriptome variance between the spot and non-spot of tree peony flower, and revealed that the co-expression of four anthocyanin structural genes was responsible for spot pigment in tree peony. The data will further help to unravel the genetic mechanism of peony flower spot formation. 10.3389/fpls.2015.00964
A petal-specific InMYB1 promoter from Japanese morning glory: a useful tool for molecular breeding of floricultural crops. Azuma Mirai,Morimoto Reina,Hirose Mana,Morita Yasumasa,Hoshino Atsushi,Iida Shigeru,Oshima Yoshimi,Mitsuda Nobutaka,Ohme-Takagi Masaru,Shiratake Katsuhiro Plant biotechnology journal Production of novel transgenic floricultural crops with altered petal properties requires transgenes that confer a useful trait and petal-specific promoters. Several promoters have been shown to control transgenes in petals. However, all suffer from inherent drawbacks such as low petal specificity and restricted activity during the flowering stage. In addition, the promoters were not examined for their ability to confer petal-specific expression in a wide range of plant species. Here, we report the promoter of InMYB1 from Japanese morning glory as a novel petal-specific promoter for molecular breeding of floricultural crops. First, we produced stable InMYB1_1kb::GUS transgenic Arabidopsis and Eustoma plants and characterized spatial and temporal expression patterns under the control of the InMYB1 promoter by histochemical β-glucuronidase (GUS) staining. GUS staining patterns were observed only in petals. This result showed that the InMYB1 promoter functions as a petal-specific promoter. Second, we transiently introduced the InMYB1_1 kb::GUS construct into Eustoma, chrysanthemum, carnation, Japanese gentian, stock, rose, dendrobium and lily petals by particle bombardment. GUS staining spots were observed in Eustoma, chrysanthemum, carnation, Japanese gentian and stock. These results showed that the InMYB1 promoter functions in most dicots. Third, to show the InMYB1 promoter utility in molecular breeding, a MIXTA-like gene function was suppressed or enhanced under the control of InMYB1 promoter in Arabidopsis. The transgenic plant showed a conspicuous morphological change only in the form of wrinkled petals. Based on these results, the InMYB1 promoter can be used as a petal-specific promoter in molecular breeding of floricultural crops. 10.1111/pbi.12389
Development of a complex floral trait: The pollinator-attracting petal spots of the beetle daisy, Gorteria diffusa (Asteraceae). Thomas Meredith M,Rudall Paula J,Ellis Allan G,Savolainen Vincent,Glover Beverley J American journal of botany Angiosperms possess a variety of complex floral traits that attract animal pollinators. Dark petal spots have evolved independently many times across the angiosperm phylogeny and have been shown to attract insect pollinators from several lineages. Here we present new data on the ontogeny and morphological complexity of the elaborate insect-mimicking petal spots of the South African daisy species, Gorteria diffusa (Asteraceae), commonly known as the beetle daisy, although it is fly-pollinated. Using light and scanning electron microscopy and histology, we identified three distinct specialized cell types of the petal epidermis that compose the petal spot. Sophisticated patterning of pigments, cuticular elaborations, and multicellular papillate trichomes make the G. diffusa petal spot a uniquely complex three-dimensional floral ornament. Examination of young inflorescence meristems revealed that G. diffusa ray florets develop (and probably also initiate) basipetally, in the opposite direction to the disc florets-a developmental phenomenon that has been found in some other daisies, but which contradicts conventional theories of daisy inflorescence architecture. Using these ontogenetic and morphological data, we have identified the mechanism by which G. diffusa patterns its insect-mimicking petal spots, and we propose a testable model for the genetic regulation of petal spot identity. 10.3732/ajb.0900079
Comparison of petunia and calibrachoa in carotenoid pigmentation of corollas. Kishimoto Sanae,Oda-Yamamizo Chihiro,Ohmiya Akemi Breeding science Petunia () is an important ornamental plant with a wide range of corolla colors. Although pale-yellow-flowered cultivars, with a low amount of carotenoids in their corollas, are now available, no deep-yellow-flowered cultivars exist. To find why petunia cannot accumulate enough carotenoids to have deep-yellow flowers, we compared carotenoid profiles and expression of carotenoid metabolic genes between pale-yellow-flowered petunia and deep-yellow-flowered calibrachoa (), a close relative. The carotenoid contents and the ratios of esterified xanthophylls to total xanthophylls in petunia corollas were significantly lower than those in calibrachoa, despite similar carotenoid components. A lower esterification rate of -xanthophylls than of -xanthophylls in petunia suggests that petunia xanthophyll esterase (XES) has low substrate specificity for -xanthophylls, which are more abundant than -xanthophylls in petunia corolla. The expression of genes encoding key enzymes of carotenoid biosynthesis was lower and that of a carotenoid catabolic gene was higher in petunia. expression was significantly lower in petunia. The results suggest that low biosynthetic activity, high cleavage activity, and low esterification activity cause low carotenoid accumulation in petunia corollas. 10.1270/jsbbs.18130
Betalain production is possible in anthocyanin-producing plant species given the presence of DOPA-dioxygenase and L-DOPA. Harris Nilangani N,Javellana John,Davies Kevin M,Lewis David H,Jameson Paula E,Deroles Simon C,Calcott Kate E,Gould Kevin S,Schwinn Kathy E BMC plant biology BACKGROUND:Carotenoids and anthocyanins are the predominant non-chlorophyll pigments in plants. However, certain families within the order Caryophyllales produce another class of pigments, the betalains, instead of anthocyanins. The occurrence of betalains and anthocyanins is mutually exclusive. Betalains are divided into two classes, the betaxanthins and betacyanins, which produce yellow to orange or violet colours, respectively. In this article we show betalain production in species that normally produce anthocyanins, through a combination of genetic modification and substrate feeding. RESULTS:The biolistic introduction of DNA constructs for transient overexpression of two different dihydroxyphenylalanine (DOPA) dioxygenases (DODs), and feeding of DOD substrate (L-DOPA), was sufficient to induce betalain production in cell cultures of Solanum tuberosum (potato) and petals of Antirrhinum majus. HPLC analysis showed both betaxanthins and betacyanins were produced. Multi-cell foci with yellow, orange and/or red colours occurred, with either a fungal DOD (from Amanita muscaria) or a plant DOD (from Portulaca grandiflora), and the yellow/orange foci showed green autofluorescence characteristic of betaxanthins. Stably transformed Arabidopsis thaliana (arabidopsis) lines containing 35S: AmDOD produced yellow colouration in flowers and orange-red colouration in seedlings when fed L-DOPA. These tissues also showed green autofluorescence. HPLC analysis of the transgenic seedlings fed L-DOPA confirmed betaxanthin production. CONCLUSIONS:The fact that the introduction of DOD along with a supply of its substrate (L-DOPA) was sufficient to induce betacyanin production reveals the presence of a background enzyme, possibly a tyrosinase, that can convert L-DOPA to cyclo-DOPA (or dopaxanthin to betacyanin) in at least some anthocyanin-producing plants. The plants also demonstrate that betalains can accumulate in anthocyanin-producing species. Thus, introduction of a DOD and an enzyme capable of converting tyrosine to L-DOPA should be sufficient to confer both betaxanthin and betacyanin production to anthocyanin-producing species. The requirement for few novel biosynthetic steps may have assisted in the evolution of the betalain biosynthetic pathway in the Caryophyllales, and facilitated multiple origins of the pathway in this order and in fungi. The stably transformed 35S: AmDOD arabidopsis plants provide material to study, for the first time, the physiological effects of having both betalains and anthocyanins in the same plant tissues. 10.1186/1471-2229-12-34
Genome structure and evolution of Antirrhinum majus L. Li Miaomiao,Zhang Dongfen,Gao Qiang,Luo Yingfeng,Zhang Hui,Ma Bin,Chen Chunhai,Whibley Annabel,Zhang Yu'e,Cao Yinghao,Li Qun,Guo Han,Li Junhui,Song Yanzhai,Zhang Yue,Copsey Lucy,Li Yan,Li Xiuxiu,Qi Ming,Wang Jiawei,Chen Yan,Wang Dan,Zhao Jinyang,Liu Guocheng,Wu Bin,Yu Lili,Xu Chunyan,Li Jiang,Zhao Shancen,Zhang Yijing,Hu Songnian,Liang Chengzhi,Yin Ye,Coen Enrico,Xue Yongbiao Nature plants Snapdragon (Antirrhinum majus L.), a member of the Plantaginaceae family, is an important model for plant genetics and molecular studies on plant growth and development, transposon biology and self-incompatibility. Here we report a near-complete genome assembly of A. majus cultivar JI7 (A. majus cv.JI7) comprising 510 Megabases (Mb) of genomic sequence and containing 37,714 annotated protein-coding genes. Scaffolds covering 97.12% of the assembled genome were anchored on eight chromosomes. Comparative and evolutionary analyses revealed that a whole-genome duplication event occurred in the Plantaginaceae around 46-49 million years ago (Ma). We also uncovered the genetic architectures associated with complex traits such as flower asymmetry and self-incompatibility, identifying a unique duplication of TCP family genes dated to around 46-49 Ma and reconstructing a near-complete ψS-locus of roughly 2 Mb. The genome sequence obtained in this study not only provides a representative genome sequenced from the Plantaginaceae but also brings the popular plant model system of Antirrhinum into the genomic age. 10.1038/s41477-018-0349-9
Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR-Cas9 ribonucleoproteins. Plant cell reports KEY MESSAGE:We obtained a complete mutant line of Petunia having mutations in both F3H genes via Cas9-ribonucleoproteins delivery, which exhibited a pale purplish pink flower color. The CRISPR-Cas system is now revolutionizing agriculture by allowing researchers to generate various desired mutations in plants at will. In particular, DNA-free genome editing via Cas9-ribonucleoproteins (RNPs) delivery has many advantages in plants; it does not require codon optimization or specific promoters for expression in plant cells; furthermore, it can bypass GMO regulations in some countries. Here, we have performed site-specific mutagenesis in Petunia to engineer flower color modifications. We determined that the commercial Petunia cultivar 'Madness Midnight' has two F3H coding genes and designed one guide RNA that targets both F3H genes at once. Among 67 T plants regenerated from Cas9-RNP transfected protoplasts, we obtained seven mutant lines that contain mutations in either F3HA or F3HB gene and one complete mutant line having mutations in both F3H genes without any selectable markers. It is noteworthy that only the f3ha f3hb exhibited a clearly modified, pale purplish pink flower color (RHS 69D), whereas the others, including the single copy gene knock-out plants, displayed purple violet (RHS 93A) flowers similar to the wild-type Petunia. To the best of our knowledge, we demonstrated a precedent of ornamental crop engineering by DNA-free CRISPR method for the first time, which will greatly accelerate a transition from a laboratory to a farmer's field. 10.1007/s00299-020-02593-1
Failure to launch: the self-regulating Md-MYB10 R6 gene from apple is active in flowers but not leaves of Petunia. Boase Murray R,Brendolise Cyril,Wang Lei,Ngo Hahn,Espley Richard V,Hellens Roger P,Schwinn Kathy E,Davies Kevin M,Albert Nick W Plant cell reports KEY MESSAGE:The Md - MYB10 R6 gene from apple is capable of self-regulating in heterologous host species and enhancing anthocyanin pigmentation, but the activity of MYB10 is dependent on endogenous protein partners. Coloured foliage due to anthocyanin pigments (bronze/red/black) is an attractive trait that is often lacking in many bedding, ornamental and horticultural plants. Apples (Malus × domestica) containing an allelic variant of the anthocyanin regulator, Md-MYB10 R6 , are highly pigmented throughout the plant, due to autoregulation by MYB10 upon its own promoter. We investigated whether Md-MYB10 R6 from apple is capable of functioning within the heterologous host Petunia hybrida to generate plants with novel pigmentation patterns. The Md-MYB10 R6 transgene (MYB10-R6 pro :MYB10:MYB10 term ) activated anthocyanin synthesis when transiently expressed in Antirrhinum rosea (dorsea) petals and petunia leaf discs. Stable transgenic petunias containing Md-MYB10 R6 lacked foliar pigmentation but had coloured flowers, complementing the an2 phenotype of 'Mitchell' petunia. The absence of foliar pigmentation was due to the failure of the Md-MYB10 R6 gene to self-activate in vegetative tissues, suggesting that additional protein partners are required for Md-MYB10 to activate target genes in this heterologous system. In petunia flowers, where endogenous components including MYB-bHLH-WDR (MBW) proteins were present, expression of the Md-MYB10 R6 promoter was initiated, allowing auto-regulation to occur and activating anthocyanin production. Md-MYB10 is capable of operating within the petunia MBW gene regulation network that controls the expression of the anthocyanin biosynthesis genes, AN1 (bHLH) and MYBx (R3-MYB repressor) in petals. 10.1007/s00299-015-1827-4
Overexpression of CONSTANS-like 16 enhances chlorophyll accumulation in petunia corollas. Ohmiya Akemi,Oda-Yamamizo Chihiro,Kishimoto Sanae Plant science : an international journal of experimental plant biology We have previously found that a gene closely related to Arabidopsis CONSTANS-like 16 (COL16) was coordinately expressed with chlorophyll content in chrysanthemum petals and leaves. Here, to elucidate whether COL16 is involved in the regulation of chlorophyll biosynthesis and accumulation, we analyzed the function of COL16 in petunia (Petunia hybrida). We identified three petunia COL16 homologs: PhCOL16a, PhCOL16b, and PhCOL16c. Expression patterns of all three homologs were associated with chlorophyll content, with lower levels in white corollas than in pale green corollas, and relatively high levels in leaves. The result suggests that PhCOL16 homologs are involved in chlorophyll accumulation. We introduced a PhCOL16a overexpression construct into petunia. The transgenic plants had pale green corollas with a higher chlorophyll content than wild-type plants. Expression of genes encoding key enzymes of chlorophyll biosynthesis was significantly higher in the transgenic plants than in the wild-type plants. The results indicate that PhCOL16 positively regulates chlorophyll biosynthesis. 10.1016/j.plantsci.2018.11.013
Chalcone synthase as a reporter in virus-induced gene silencing studies of flower senescence. Plant molecular biology Agrobacterium-mediated infection of petunia (Petunia hybrida) plants with tobacco rattle virus (TRV) bearing fragments of Petunia genes resulted in systemic infection and virus-induced gene silencing (VIGS) of the homologous host genes. Infection with TRV containing a phytoene desaturase (PDS) fragment resulted in reduced abundance of PDS transcripts and typical photobleaching of photosynthetic tissues. Infection with TRV containing a chalcone synthase (CHS) fragment resulted in silencing of anthocyanin production in infected flowers. The silencing phenotype ranged from scattered white spots on the normal purple background to entirely white flowers. Symptoms in the V26 cultivar were a diffuse mosaic, but infection of some purple-flowered commercial cultivars resulted in large white sectors and even entirely white flowers. Abundance of CHS transcripts in the white flowers was less than 4% of that in purple flowers on the same plant. Infection with TRV containing a tandem construct of PDS and CHS resulted in leaf photobleaching and white patterns on the flowers. Transcripts of CHS and PDS were reduced both in leaves and in flowers confirming simultaneous silencing of both genes by the tandem construct. We tested the effects of infection with TRV containing CHS and a fragment of a petunia gene encoding for 1-aminocyclopropane-1-carboxylate oxidase (ACO4) Abundance of transcripts encoding ACO4 and ACO1 were reduced (by 5% and 20%, respectively) in infected flowers. Whether the flowers were treated with ACC or pollinated, the white (silenced) flowers or flower sectors produced less ethylene and senesced later than purple (non-silenced) tissues. These results indicate the value of VIGS with tandem constructs containing CHS as reporter and a target gene as a tool for examining the function of floral-associated genes. 10.1007/s11103-004-0590-7
Post-transcriptional silencing of chalcone synthase is involved in phenotypic lability in petals and leaves of bicolor dahlia (Dahlia variabilis) 'Yuino'. Ohno Sho,Hori Wakako,Hosokawa Munetaka,Tatsuzawa Fumi,Doi Motoaki Planta MAIN CONCLUSION:Post-transcriptional gene silencing (PTGS) of a chalcone synthase ( DvCHS2 ) occurred in the white part of bicolor petals and flavonoid-poor leaves; however, it did not in red petals and flavonoid-rich leaves. Petal color lability is a prominent feature of bicolor dahlia cultivars, and causes plants to produce not only original bicolor petals with colored bases and pure white tips, but also frequently single-colored petals without white tips. In this study, we analysed the molecular mechanisms that are associated with petal color lability using the red-white bicolor cultivar 'Yuino'. Red single-colored petals lose their white tips as a result of recover of flavonoid biosynthesis. Among flavonoid biosynthetic genes including four chalcone synthase (CHS)-like genes (DvCHS1, DvCHS2, DvCHS3, and DvCHS4), DvCHS1 and DvCHS2 had significantly lower expression levels in the white part of bicolor petals than in red petals, while DvCHS3, DvCHS4, and other flavonoid biosynthetic genes had almost the same expression levels. Small RNAs from the white part of a bicolor petal were mapped onto DvCHS1 and DvCHS2, while small RNAs from a red single-colored petal were not mapped onto any of the four CHS genes. A relationship between petal color and leaf flavonoid accumulation has previously been demonstrated, whereby red petal-producing plants accumulate flavonoids in their leaves, while bicolor petal-producing plants tend not to. The expression level of DvCHS2 was down-regulated in flavonoid-poor leaves and small RNAs from flavonoid-poor leaves were mapped onto DvCHS2, suggesting that the down-regulation of DvCHS2 in flavonoid-poor leaves occurs post-transcriptionally. Genomic analysis also suggested that DvCHS2 is the key gene involved in bicolor formation. Together, these results suggest that post-transcriptional gene silencing of DvCHS2 plays a key role in phenotypic lability in this bicolor dahlia. 10.1007/s00425-017-2796-3
Tandemly arranged chalcone synthase A genes contribute to the spatially regulated expression of siRNA and the natural bicolor floral phenotype in Petunia hybrida. Morita Yasumasa,Saito Ryoko,Ban Yusuke,Tanikawa Natsu,Kuchitsu Kazuyuki,Ando Toshio,Yoshikawa Manabu,Habu Yoshiki,Ozeki Yoshihiro,Nakayama Masayoshi The Plant journal : for cell and molecular biology The natural bicolor floral traits of the horticultural petunia (Petunia hybrida) cultivars Picotee and Star are caused by the spatial repression of the chalcone synthase A (CHS-A) gene, which encodes an anthocyanin biosynthetic enzyme. Here we show that Picotee and Star petunias carry the same short interfering RNA (siRNA)-producing locus, consisting of two intact CHS-A copies, PhCHS-A1 and PhCHS-A2, in a tandem head-to-tail orientation. The precursor CHS mRNAs are transcribed from the two CHS-A copies throughout the bicolored petals, but the mature CHS mRNAs are not found in the white tissues. An analysis of small RNAs revealed the accumulation of siRNAs of 21 nucleotides that originated from the exon 2 region of both CHS-A copies. This accumulation is closely correlated with the disappearance of the CHS mRNAs, indicating that the bicolor floral phenotype is caused by the spatially regulated post-transcriptional silencing of both CHS-A genes. Linkage between the tandemly arranged CHS-A allele and the bicolor floral trait indicates that the CHS-A allele is a necessary factor to confer the trait. We suppose that the spatially regulated production of siRNAs in Picotee and Star flowers is triggered by another putative regulatory locus, and that the silencing mechanism in this case may be different from other known mechanisms of post-transcriptional gene silencing in plants. A sequence analysis of wild Petunia species indicated that these tandem CHS-A genes originated from Petunia integrifolia and/or Petunia inflata, the parental species of P. hybrida, as a result of a chromosomal rearrangement rather than a gene duplication event. 10.1111/j.1365-313X.2012.04908.x
Inhibition of post-transcriptional gene silencing of chalcone synthase genes in petunia picotee petals by fluacrypyrim. Ban Yusuke,Morita Yasumasa,Ogawa Mika,Higashi Katsumi,Nakatsuka Takashi,Nishihara Masahiro,Nakayama Masayoshi Journal of experimental botany In petals of picotee petunia (Petunia hybrida) cultivars, margin-specific post-transcriptional gene silencing (PTGS) of chalcone synthase A (CHSA) inhibits anthocyanin biosynthesis, resulting in marginal white tissue formation. In this study, we found that a low molecular mass compound, fluacrypyrim, inhibits PTGS of CHSA, and we explored the site-specific PTGS mechanism of operation. Fluacrypyrim treatment abolished the picotee pattern and eliminated site-specific differences in the levels of anthocyanin-related compounds, CHSA expression, and CHSA small interfering RNA (siRNA). In addition, fluacrypyrim abolished the petunia star-type pattern, which is also caused by PTGS of CHSA. Fluacrypyrim treatment was effective only at the early floral developmental stage and predominantly eliminated siRNA derived from CHS genes; i.e. siRNA derived from other genes remained at a comparable level. Fluacrypyrim probably targets the induction of PTGS that specifically operates for CHS genes in petunia picotee flowers, rather than common PTGS maintenance mechanisms that degrade mRNAs and generate siRNA. Upon treatment, the proportion of colored tissue increased due to a shift of the border between white and colored sites toward the margin in a time- and dose-dependent manner. These findings imply that the fluacrypyrim-targeted PTGS induction is completed gradually and its strength is attenuated from the margins to the center of petunia picotee petals. 10.1093/jxb/erz009
RNAi-induced silencing in floral tissues of Petunia hybrida by agroinfiltration: a rapid assay for chalcone isomerase gene function analysis. Keykha F,Bagheri A,Moshtaghi N,Bahrami A R,Sharifi A Cellular and molecular biology (Noisy-le-Grand, France) Variegation in flower color is commonly observed in many plant species and also occurs on Petunia (Petunia hybrida) as an ornamental plant. Variegated plants are of highly valuable in the floricultural market. Agroinfiltration is an Agrobacterium-mediated transient assay for the analysis of gene function and genetic modification in leaves, flowers and fruit tissues of various plants. Transient RNAi-induced silencing by agroinfiltration has been developed in leaves and fruits of several plant species. Here we report the establishment of a transient hairpin RNAi-induced silencing system for color modification assay in floral tissues of Petunia with different colors. chiRNAi construct was cloned into the pBI121 vector under the control of 35S promoter. Transient RNA silencing of chi in the floral tissues of Petunia was induced by delivering 530 bp chi hairpin RNAs (hpRNAs) into the petals of flowers using agroinfiltration. Impaired anthocyanin accumulation and reduction of endogenous mRNAs of the corresponding targets were observed in the infiltrated areas of the petals of four colors of Petunia. Silencing of the endogenous chi mRNAs was highly effective in reduction of chi gene and anthocyanin accumulation. This transient silencing system is a prototype for modification of the anthocyanin biosynthetic pathway in Petunia through chi gene suppression.