Dopamine and extinction: a convergence of theory with fear and reward circuitry. Abraham Antony D,Neve Kim A,Lattal K Matthew Neurobiology of learning and memory Research on dopamine lies at the intersection of sophisticated theoretical and neurobiological approaches to learning and memory. Dopamine has been shown to be critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in reward-related tasks. A parallel and growing literature indicates that dopamine is involved in fear conditioning and extinction. These studies are consistent with long-standing ideas about appetitive-aversive interactions in learning theory and they speak to the general nature of cellular and molecular processes that underlie behavior. We review the behavioral and neurobiological literature showing a role for dopamine in fear conditioning and extinction. At a cellular level, we review dopamine signaling and receptor pharmacology, cellular and molecular events that follow dopamine receptor activation, and brain systems in which dopamine functions. At a behavioral level, we describe theories of learning and dopamine function that could describe the fundamental rules underlying how dopamine modulates different aspects of learning and memory processes. 10.1016/j.nlm.2013.11.007
    Dopamine neurons drive fear extinction learning by signaling the omission of expected aversive outcomes. Salinas-Hernández Ximena I,Vogel Pascal,Betz Sebastian,Kalisch Raffael,Sigurdsson Torfi,Duvarci Sevil eLife Extinction of fear responses is critical for adaptive behavior and deficits in this form of safety learning are hallmark of anxiety disorders. However, the neuronal mechanisms that initiate extinction learning are largely unknown. Here we show, using single-unit electrophysiology and cell-type specific fiber photometry, that dopamine neurons in the ventral tegmental area (VTA) are activated by the omission of the aversive unconditioned stimulus (US) during fear extinction. This dopamine signal occurred specifically during the beginning of extinction when the US omission is unexpected, and correlated strongly with extinction learning. Furthermore, temporally-specific optogenetic inhibition or excitation of dopamine neurons at the time of the US omission revealed that this dopamine signal is both necessary for, and sufficient to accelerate, normal fear extinction learning. These results identify a prediction error-like neuronal signal that is necessary to initiate fear extinction and reveal a crucial role of DA neurons in this form of safety learning. 10.7554/eLife.38818
    Effect of acute swim stress on plasma corticosterone and brain monoamine levels in bidirectionally selected DxH recombinant inbred mouse strains differing in fear recall and extinction. Browne Caroline A,Hanke Joachim,Rose Claudia,Walsh Irene,Foley Tara,Clarke Gerard,Schwegler Herbert,Cryan John F,Yilmazer-Hanke Deniz Stress (Amsterdam, Netherlands) Stress-induced changes in plasma corticosterone and central monoamine levels were examined in mouse strains that differ in fear-related behaviors. Two DxH recombinant inbred mouse strains with a DBA/2J background, which were originally bred for a high (H-FSS) and low fear-sensitized acoustic startle reflex (L-FSS), were used. Levels of noradrenaline, dopamine, and serotonin and their metabolites 3,4-dihydroxyphenyacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were studied in the amygdala, hippocampus, medial prefrontal cortex, striatum, hypothalamus and brainstem. H-FSS mice exhibited increased fear levels and a deficit in fear extinction (within-session) in the auditory fear-conditioning test, and depressive-like behavior in the acute forced swim stress test. They had higher tissue noradrenaline and serotonin levels and lower dopamine and serotonin turnover under basal conditions, although they were largely insensitive to stress-induced changes in neurotransmitter metabolism. In contrast, acute swim stress increased monoamine levels but decreased turnover in the less fearful L-FSS mice. L-FSS mice also showed a trend toward higher basal and stress-induced corticosterone levels and an increase in noradrenaline and serotonin in the hypothalamus and brainstem 30 min after stress compared to H-FSS mice. Moreover, the dopaminergic system was activated differentially in the medial prefrontal cortex and striatum of the two strains by acute stress. Thus, H-FSS mice showed increased basal noradrenaline tissue levels compatible with a fear phenotype or chronic stressed condition. Low corticosterone levels and the poor monoamine response to stress in H-FSS mice may point to mechanisms similar to those found in principal fear disorders or post-traumatic stress disorder. 10.3109/10253890.2014.954104
    Facilitation of dopamine-dependent long-term potentiation in the medial prefrontal cortex of male rats follows the behavioral effects of stress. Lamanna Jacopo,Isotti Francesco,Ferro Mattia,Racchetti Gabriella,Anchora Lavinia,Rucco Daniele,Malgaroli Antonio Journal of neuroscience research The effect of stress on animal behavior and brain activity has been attracting growing attention in the last decades. Stress dramatically affects several aspects of animal behavior, including motivation and cognitive functioning, and has been used to model human pathologies such as post-traumatic stress disorder. A key question is whether stress alters the plastic potential of synaptic circuits. In this work, we evaluated if stress affects dopamine (DA)-dependent synaptic plasticity in the medial prefrontal cortex (mPFC). On male adolescent rats, we characterized anxiety- and depressive-like behaviors using behavioral testing before and after exposure to a mild stress (elevated platform, EP). After the behavioral protocols, we investigated DA-dependent long-term potentiation (DA-LTP) and depression (DA-LTD) on acute slices of mPFC and evaluated the activation of DA-producing brain regions by western and dot blot analysis. We show that exposure to the EP stress enhances DA-LTP and that desipramine (DMI) treatment abolishes this effect. We also found that DA-LTD is not affected by EP stress unless when this is followed by DMI treatment. In addition, EP stress reduces anxiety, an effect abolished by both DMI and ketamine, while motivation is promoted by previous exposure to EP stress independently of pharmacological treatments. Finally, this form of stress reduces the expression of the early gene cFOS in the ventral tegmental area. These findings support the idea that mild stressors can promote synaptic plasticity in PFC through a dopaminergic mechanism, an effect that might increase the sensitivity of mPFC to subsequent stressful experiences. 10.1002/jnr.24732
    Dopamine D1 receptor activation rescues extinction impairments in low-estrogen female rats and induces cortical layer-specific activation changes in prefrontal-amygdala circuits. Rey Colin D,Lipps Jennifer,Shansky Rebecca M Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology Post-traumatic stress disorder (PTSD) is twice as common in women as in men; it is a major public health problem whose neurobiological basis is unknown. In preclinical studies using fear conditioning and extinction paradigms, women and female animals with low estrogen levels exhibit impaired extinction retrieval, but the mechanisms that underlie these hormone-based discrepancies have not been identified. There is much evidence that estrogen can modulate dopaminergic transmission, and here we tested the hypothesis that dopamine-estrogen interactions drive extinction processes in females. Intact male and female rats were trained on cued fear conditioning, and received an intraperitoneal injection of a D1 agonist or vehicle before extinction learning. As reported previously, females that underwent extinction during low estrogen estrous phases (estrus/metaestrus/diestrus (EMD)) froze more during extinction retrieval than those that had been in the high-estrogen phase (proestrus; PRO). However, D1 stimulation reversed this relationship, impairing extinction retrieval in PRO and enhancing it in EMD. We also combined retrograde tracing and fluorescent immunohistochemistry to measure c-fos expression in infralimbic (IL) projections to the basolateral area of the amygdala (BLA), a neural pathway known to be critical to extinction retrieval. Again we observed diverging, estrous-dependent effects; SKF treatment induced a positive correlation between freezing and IL-BLA circuit activation in EMD animals, and a negative correlation in PRO animals. These results show for the first time that hormone-dependent extinction deficits can be overcome with non-hormone-based interventions, and suggest a circuit-specific mechanism by which these behavioral effects occur. 10.1038/npp.2013.338
    SKF83959, an agonist of phosphatidylinositol-linked dopamine receptors, prevents renewal of extinguished conditioned fear and facilitates extinction. Chen Fu-Feng,Wang Can-Ming,Chen Hong-Sheng,Wang Ji,Han Qian-Qian,Cao Yu,Shen Tian-Tian,Yang Yuan-Jian,Hu Zhuang-Li,Wang Fang,Chen Jian-Guo,Wu Peng-Fei Brain research Fear-related anxiety disorders, such as social phobia and post-traumatic stress disorder, are partly explained by an uncontrollable state of fear. An emerging literature suggests dopamine receptor-1 (D receptor) in the amygdala is involved in the regulation of fear memory. An early study has reported that amygdaloid D receptor (DR) is not coupled to the classic cAMP-dependent signal transduction. Here, we investigated whether SKF83959, a typical DR agonist that mainly activates a D-like receptor-dependent phosphatidylinositol (PI) signal pathway, facilitates fear extinction and reduces the return of extinguished fear. Interestingly, long-term loss of fearful memories can be induced through a combination of SKF83959 (1 mg/kg/day, i.p., once daily for one week) pharmacotherapy and extinction training. Furthermore, sub-chronic administration of SKF83959 after fear conditioning reduced fear renewal and reinstatement in the mice. We found that the activation DR and PI signaling in the amygdala was responsible for the effect of SKF83959 on fear extinction. Additionally, SKF83959 significantly promoted the elevation of brain-derived neurotrophic factor (BDNF) expression, possibly by the cAMP response element binding protein (CREB) -directed gene transcription. Given the beneficial effects on extinction, SKF83959 may emerge as a candidate pharmacological approach for improving cognitive-behavioral therapy on fear-related anxiety disorders. 10.1016/j.brainres.2020.147136
    Norepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex. Xing Bo,Li Yan-Chun,Gao Wen-Jun Brain research Among the neuromodulators that regulate prefrontal cortical circuit function, the catecholamine transmitters norepinephrine (NE) and dopamine (DA) stand out as powerful players in working memory and attention. Perturbation of either NE or DA signaling is implicated in the pathogenesis of several neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), schizophrenia, and drug addiction. Although the precise mechanisms employed by NE and DA to cooperatively control prefrontal functions are not fully understood, emerging research indicates that both transmitters regulate electrical and biochemical aspects of neuronal function by modulating convergent ionic and synaptic signaling in the prefrontal cortex (PFC). This review summarizes previous studies that investigated the effects of both NE and DA on excitatory and inhibitory transmissions in the prefrontal cortical circuitry. Specifically, we focus on the functional interaction between NE and DA in prefrontal cortical local circuitry, synaptic integration, signaling pathways, and receptor properties. Although it is clear that both NE and DA innervate the PFC extensively and modulate synaptic function by activating distinctly different receptor subtypes and signaling pathways, it remains unclear how these two systems coordinate their actions to optimize PFC function for appropriate behavior. Throughout this review, we provide perspectives and highlight several critical topics for future studies. This article is part of a Special Issue entitled SI: Noradrenergic System. 10.1016/j.brainres.2016.01.005
    Fear Memory Recall Potentiates Opiate Reward Sensitivity through Dissociable Dopamine D1 versus D4 Receptor-Dependent Memory Mechanisms in the Prefrontal Cortex. Jing Li Jing,Szkudlarek Hanna,Renard Justine,Hudson Roger,Rushlow Walter,Laviolette Steven R The Journal of neuroscience : the official journal of the Society for Neuroscience Disturbances in prefrontal cortical (PFC) dopamine (DA) transmission are well established features of psychiatric disorders involving pathological memory processing, such as post-traumatic stress disorder and opioid addiction. Transmission through PFC DA D4 receptors (D4Rs) has been shown to potentiate the emotional salience of normally nonsalient emotional memories, whereas transmission through PFC DA D1 receptors (D1Rs) has been demonstrated to selectively block recall of reward- or aversion-related associative memories. In the present study, using a combination of fear conditioning and opiate reward conditioning in male rats, we examined the role of PFC D4/D1R signaling during the processing of fear-related memory acquisition and recall and subsequent sensitivity to opiate reward memory formation. We report that PFC D4R activation potentiates the salience of normally subthreshold fear conditioning memory cues and simultaneously potentiates the rewarding effects of systemic or intra-ventral tegmental area (VTA) morphine conditioning cues. In contrast, blocking the recall of salient fear memories with intra-PFC D1R activation, blocks the ability of fear memory recall to potentiate systemic or intra-VTA morphine place preference. These effects were dependent upon dissociable PFC phosphorylation states involving calcium-calmodulin-kinase II or extracellular signal-related kinase 1-2, following intra-PFC D4 or D1R activation, respectively. Together, these findings reveal new insights into how aberrant PFC DAergic transmission and associated downstream molecular signaling pathways may modulate fear-related emotional memory processing and concomitantly increase opioid addiction vulnerability. Post-traumatic stress disorder is highly comorbid with addiction. In this study, we use a translational model of fear memory conditioning to examine how transmission through dopamine D1 or D4 receptors, in the prefrontal cortex (PFC), may differentially control acquisition or recall of fear memories and how these mechanisms might regulate sensitivity to the rewarding effects of opioids. We demonstrate that PFC D4 activation not only controls the salience of fear memory acquisition, but potentiates the rewarding effects of opioids. In contrast, PFC D1 receptor activation blocks recall of fear memories and prevents potentiation of opioid reward effects. Together, these findings demonstrate novel PFC mechanisms that may account for how emotional memory disturbances might increase the addictive liability of opioid-class drugs. 10.1523/JNEUROSCI.3113-17.2018
    Selective dopamine D receptor antagonism significantly attenuates stress-induced immobility in a rat model of post-traumatic stress disorder. Rice Onarae V,Ashby Charles R,Dixon Clark,Laurenzo William,Hayden Jason,Song Rui,Li Jin,Tiwari Amit K,Gardner Eliot L Synapse (New York, N.Y.) Post-traumatic stress disorder (PTSD) is a debilitating psychiatric syndrome that occurs in individuals exposed to extremely threatening or traumatic events. In both animals and humans, dopamine (DA) function appears to be dysregulated in brain areas involved in the conditioned fear response(s) that underlie PTSD. In this study, we determined the effect of the selective DA D receptor antagonists YQA14A (6.25, 12.5 and 25 mg/kg i.p.) and SB-277011A (6 mg/kg i.p.) on tone-induced fear (assessed by measuring freeze time) in a modified version of the single-prolonged stress (SPS) model of PTSD in adult male Sprague-Dawley rats. Rats pretreated with vehicle and then subjected to restraint stress, forced swim and random foot shock (SPS) in the presence of a distinctive tone, displayed a significantly increased tone-induced contextual freeze time and fecal pellet mass following re-exposure to the tone. Rats pretreated with a single i.p. injection of 6.25 or 12.5 mg/kg of YQA14 or 6 mg/kg of SB-277011A showed significantly attenuated contextual freeze time in the presence of the tone when tested 14 days after exposure to SPS. Overall, our results indicate that selectively antagonizing DA D receptors significantly decreases freezing time caused by an environment previously associated with stress. If our findings can be extrapolated to humans with PTSD, they suggest that DA D receptors may play a role in the pathophysiology of PTSD, and may have therapeutic utility for the clinical management of PTSD. 10.1002/syn.22035
    Role of dopamine D3 receptor in alleviating behavioural deficits in animal models of post-traumatic stress disorder. Song Dake,Ge Yaping,Chen Zhaodi,Shang Chao,Guo Ying,Zhao Taiyun,Li Yunfeng,Wu Ning,Song Rui,Li Jin Progress in neuro-psychopharmacology & biological psychiatry Post-traumatic stress disorder (PTSD) is a complicated psychiatric disorder, which occurs after exposure to a traumatic event. The main clinical manifestation of PTSD includes fear and stress dysregulation. In both animals and humans, dysregulation of dopamine function appears to be related to conditioned fear responses. Previous studies show that the dopamine D3 receptor (D3R) is involved in schizophrenia, autism, and substance use disorders and is related to emotional disorders. However, few studies have investigated the role of the D3R in the pathogenesis and aetiology of PTSD. In the current study, we have reported that D3R knockout (D3R) mice displayed decreased freezing time of contextual fearing and anxiolytic effects following training sessions consisting of exposure to inescapable electric foot-shocks. Similarly, highly selective blockade of D3Rs by YQA14, a novel D3R antagonist, significantly ameliorated freezing and anxiogenic-like behaviours in the single-prolonged stress (SPS) model of PTSD in rats. And more, YQA14 selectively alleviated the symptoms of PTSD in WT mice but not in D3R mice. In summary, this study demonstrates the anti-PTSD effects of blockade or knockout of the D3R, suggesting that the D3R might play an important role in the pathogenesis and aetiology of PTSD, and might be a potential target for the clinical management of PTSD. 10.1016/j.pnpbp.2018.03.001